A Discrete-Event Network Simulator
API
tap-fd-net-device-helper.cc
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2012 INRIA, 2012 University of Washington
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation;
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
16  */
17 
19 
20 #include "encode-decode.h"
21 
22 #include "ns3/abort.h"
23 #include "ns3/config.h"
24 #include "ns3/fd-net-device.h"
25 #include "ns3/log.h"
26 #include "ns3/names.h"
27 #include "ns3/object-factory.h"
28 #include "ns3/packet.h"
29 #include "ns3/simulator.h"
30 #include "ns3/trace-helper.h"
31 
32 #include <arpa/inet.h>
33 #include <errno.h>
34 #include <iomanip>
35 #include <iostream>
36 #include <limits>
37 #include <memory>
38 #include <net/ethernet.h>
39 #include <net/if.h>
40 #include <netinet/in.h>
41 #include <netpacket/packet.h>
42 #include <stdlib.h>
43 #include <string.h>
44 #include <string>
45 #include <sys/ioctl.h>
46 #include <sys/socket.h>
47 #include <sys/stat.h>
48 #include <sys/un.h>
49 #include <sys/wait.h>
50 #include <time.h>
51 #include <unistd.h>
52 
53 namespace ns3
54 {
55 
56 NS_LOG_COMPONENT_DEFINE("TapFdNetDeviceHelper");
57 
58 #define TAP_MAGIC 95549
59 
61 {
62  m_deviceName = "";
63  m_modePi = false;
67  m_tapPrefix6 = 64;
69 }
70 
71 void
73 {
74  m_modePi = modePi;
75 }
76 
77 void
79 {
80  m_tapIp4 = address;
81 }
82 
83 void
85 {
86  m_tapMask4 = mask;
87 }
88 
89 void
91 {
92  m_tapIp6 = address;
93 }
94 
95 void
97 {
98  m_tapPrefix6 = prefix;
99 }
100 
101 void
103 {
104  m_tapMac = mac;
105 }
106 
109 {
111  Ptr<FdNetDevice> device = d->GetObject<FdNetDevice>();
112 
113  //
114  // We need to explicitly set the encapsulation mode for the traffic
115  // traversing the TAP device, so the FdNetDevice is able to know
116  // how to treat the traffic in a way that in compatible with the
117  // TAP device.
118  //
119  if (m_modePi)
120  {
121  device->SetEncapsulationMode(FdNetDevice::DIXPI);
122  }
123 
124  SetFileDescriptor(device);
125  return device;
126 }
127 
128 void
130 {
131  NS_LOG_LOGIC("Creating TAP device");
132 
133  //
134  // Call out to a separate process running as suid root in order to create a
135  // TAP device. We do this to avoid having the entire simulation running as root.
136  //
137  int fd = CreateFileDescriptor();
138  device->SetFileDescriptor(fd);
139 }
140 
141 int
143 {
144  NS_LOG_FUNCTION(this);
145 
146  //
147  // We're going to fork and exec that program soon, but first we need to have
148  // a socket to talk to it with. So we create a local interprocess (Unix)
149  // socket for that purpose.
150  //
151  int sock = socket(PF_UNIX, SOCK_DGRAM, 0);
153  sock == -1,
154  "TapFdNetDeviceHelper::CreateFileDescriptor(): Unix socket creation error, errno = "
155  << strerror(errno));
156 
157  //
158  // Bind to that socket and let the kernel allocate an endpoint
159  //
160  struct sockaddr_un un;
161  memset(&un, 0, sizeof(un));
162  un.sun_family = AF_UNIX;
163  int status = bind(sock, (struct sockaddr*)&un, sizeof(sa_family_t));
164  NS_ABORT_MSG_IF(status == -1,
165  "TapFdNetDeviceHelper::CreateFileDescriptor(): Could not bind(): errno = "
166  << strerror(errno));
167  NS_LOG_INFO("Created Unix socket");
168  NS_LOG_INFO("sun_family = " << un.sun_family);
169  NS_LOG_INFO("sun_path = " << un.sun_path);
170 
171  //
172  // We have a socket here, but we want to get it there -- to the program we're
173  // going to exec. What we'll do is to do a getsockname and then encode the
174  // resulting address information as a string, and then send the string to the
175  // program as an argument. So we need to get the sock name.
176  //
177  socklen_t len = sizeof(un);
178  status = getsockname(sock, (struct sockaddr*)&un, &len);
180  status == -1,
181  "TapFdNetDeviceHelper::CreateFileDescriptor(): Could not getsockname(): errno = "
182  << strerror(errno));
183 
184  //
185  // Now encode that socket name (family and path) as a string of hex digits
186  //
187  std::string path = BufferToString((uint8_t*)&un, len);
188  NS_LOG_INFO("Encoded Unix socket as \"" << path << "\"");
189 
190  //
191  // Fork and exec the process to create our socket. If we're us (the parent)
192  // we wait for the child (the creator) to complete and read the socket it
193  // created and passed back using the ancillary data mechanism.
194  //
195  pid_t pid = ::fork();
196  if (pid == 0)
197  {
198  NS_LOG_DEBUG("Child process");
199 
200  //
201  // build a command line argument from the encoded endpoint string that
202  // the socket creation process will use to figure out how to respond to
203  // the (now) parent process. We're going to have to give this program
204  // quite a bit of information.
205  //
206  // -d<device-name> The name of the tap device we want to create;
207  // -m<MAC-address> The MAC-48 address to assign to the new tap device;
208  // -i<IPv4-address> The IP v4 address to assign to the new tap device;
209  // -I<IPv6-address> The IP v6 address to assign to the new tap device;
210  // -n<network-IPv4-mask> The network IPv4 mask to assign to the new tap device;
211  // -N<network-IPv6-mask> The network IPv6 mask to assign to the new tap device;
212  // -t Set the IFF_TAP flag
213  // -h Set the IFF_NO_PI flag
214  // -p<path> the path to the unix socket described above.
215  //
216  // Example tap-creator -dnewdev -i1.2.3.1 -m08:00:2e:00:01:23 -n255.255.255.0 -t -h -pblah
217  //
218 
219  //
220  // The device-name is something we may want the system to make up in
221  // every case. We also rely on it being configured via an Attribute
222  // through the helper. By default, it is set to the empty string
223  // which tells the system to make up a device name such as "tap123".
224  //
225  std::ostringstream ossDeviceName;
226  if (!m_deviceName.empty())
227  {
228  ossDeviceName << "-d" << m_deviceName;
229  }
230 
231  std::ostringstream ossMac;
232  ossMac << "-m" << m_tapMac;
233 
234  std::ostringstream ossIp4;
236  {
237  ossIp4 << "-i" << m_tapIp4;
238  }
239 
240  std::ostringstream ossIp6;
242  {
243  ossIp6 << "-I" << m_tapIp6;
244  }
245 
246  std::ostringstream ossNetmask4;
247  if (m_tapMask4 != Ipv4Mask::GetZero())
248  {
249  ossNetmask4 << "-n" << m_tapMask4;
250  }
251 
252  std::ostringstream ossPrefix6;
253  ossPrefix6 << "-P" << m_tapPrefix6;
254 
255  std::ostringstream ossMode;
256  ossMode << "-t";
257 
258  std::ostringstream ossPI;
259  if (m_modePi)
260  {
261  ossPI << "-h";
262  }
263 
264  std::ostringstream ossPath;
265  ossPath << "-p" << path;
266 
267  //
268  // Execute the socket creation process image.
269  //
270  status = ::execlp(TAP_DEV_CREATOR,
271  TAP_DEV_CREATOR, // argv[0] (filename)
272  ossDeviceName.str().c_str(), // argv[1] (-d<device name>)
273  ossMac.str().c_str(), // argv[2] (-m<MAC address>
274  ossIp4.str().c_str(), // argv[3] (-i<IP v4 address>)
275  ossIp6.str().c_str(), // argv[4] (-I<IP v6 address>)
276  ossNetmask4.str().c_str(), // argv[5] (-n<IP v4 net mask>)
277  ossPrefix6.str().c_str(), // argv[6] (-P<IP v6 prefix>)
278  ossMode.str().c_str(), // argv[7] (-t <tap>)
279  ossPI.str().c_str(), // argv[8] (-h <pi>)
280  ossPath.str().c_str(), // argv[9] (-p<path>)
281  (char*)nullptr);
282 
283  //
284  // If the execlp successfully completes, it never returns. If it returns it failed or the
285  // OS is broken. In either case, we bail.
286  //
287  NS_FATAL_ERROR("TapFdNetDeviceHelper::CreateFileDescriptor(): Back from execlp(), status = "
288  << status << ", errno = " << ::strerror(errno));
289  }
290  else
291  {
292  NS_LOG_DEBUG("Parent process");
293  //
294  // We're the process running the emu net device. We need to wait for the
295  // socket creator process to finish its job.
296  //
297  int st;
298  pid_t waited = waitpid(pid, &st, 0);
299  NS_ABORT_MSG_IF(waited == -1,
300  "TapFdNetDeviceHelper::CreateFileDescriptor(): waitpid() fails, errno = "
301  << strerror(errno));
302  NS_ASSERT_MSG(pid == waited, "TapFdNetDeviceHelper::CreateFileDescriptor(): pid mismatch");
303 
304  //
305  // Check to see if the socket creator exited normally and then take a
306  // look at the exit code. If it bailed, so should we. If it didn't
307  // even exit normally, we bail too.
308  //
309  if (WIFEXITED(st))
310  {
311  int exitStatus = WEXITSTATUS(st);
312  NS_ABORT_MSG_IF(exitStatus != 0,
313  "TapFdNetDeviceHelper::CreateFileDescriptor(): socket creator exited "
314  "normally with status "
315  << exitStatus);
316  }
317  else
318  {
320  "TapFdNetDeviceHelper::CreateFileDescriptor(): socket creator exited abnormally");
321  }
322 
323  //
324  // At this point, the socket creator has run successfully and should
325  // have created our tap device, initialized it with the information we
326  // passed and sent it back to the socket address we provided. A socket
327  // (fd) we can use to talk to this tap device should be waiting on the
328  // Unix socket we set up to receive information back from the creator
329  // program. We've got to do a bunch of grunt work to get at it, though.
330  //
331  // The struct iovec below is part of a scatter-gather list. It describes a
332  // buffer. In this case, it describes a buffer (an integer) that will
333  // get the data that comes back from the socket creator process. It will
334  // be a magic number that we use as a consistency/sanity check.
335  //
336  struct iovec iov;
337  uint32_t magic;
338  iov.iov_base = &magic;
339  iov.iov_len = sizeof(magic);
340 
341  //
342  // The CMSG macros you'll see below are used to create and access control
343  // messages (which is another name for ancillary data). The ancillary
344  // data is made up of pairs of struct cmsghdr structures and associated
345  // data arrays.
346  //
347  // First, we're going to allocate a buffer on the stack to receive our
348  // data array (that contains the socket). Sometimes you'll see this called
349  // an "ancillary element" but the msghdr uses the control message termimology
350  // so we call it "control."
351  //
352  size_t msg_size = sizeof(int);
353  char control[CMSG_SPACE(msg_size)];
354 
355  //
356  // There is a msghdr that is used to minimize the number of parameters
357  // passed to recvmsg (which we will use to receive our ancillary data).
358  // This structure uses terminology corresponding to control messages, so
359  // you'll see msg_control, which is the pointer to the ancillary data and
360  // controllen which is the size of the ancillary data array.
361  //
362  // So, initialize the message header that describes the ancillary/control
363  // data we expect to receive and point it to buffer.
364  //
365  struct msghdr msg;
366  msg.msg_name = nullptr;
367  msg.msg_namelen = 0;
368  msg.msg_iov = &iov;
369  msg.msg_iovlen = 1;
370  msg.msg_control = control;
371  msg.msg_controllen = sizeof(control);
372  msg.msg_flags = 0;
373 
374  //
375  // Now we can actually receive the interesting bits from the tap
376  // creator process. Lots of pain to get four bytes.
377  //
378  ssize_t bytesRead = recvmsg(sock, &msg, 0);
380  bytesRead != sizeof(int),
381  "TapFdNetDeviceHelper::CreateFileDescriptor(): Wrong byte count from socket creator");
382 
383  //
384  // There may be a number of message headers/ancillary data arrays coming in.
385  // Let's look for the one with a type SCM_RIGHTS which indicates it's the
386  // one we're interested in.
387  //
388  struct cmsghdr* cmsg;
389  for (cmsg = CMSG_FIRSTHDR(&msg); cmsg != nullptr; cmsg = CMSG_NXTHDR(&msg, cmsg))
390  {
391  if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS)
392  {
393  //
394  // This is the type of message we want. Check to see if the magic
395  // number is correct and then pull out the socket we care about if
396  // it matches
397  //
398  if (magic == TAP_MAGIC)
399  {
400  NS_LOG_INFO("Got SCM_RIGHTS with correct magic " << magic);
401  int* rawSocket = (int*)CMSG_DATA(cmsg);
402  NS_LOG_INFO("Got the socket from the socket creator = " << *rawSocket);
403  return *rawSocket;
404  }
405  else
406  {
407  NS_LOG_INFO("Got SCM_RIGHTS, but with bad magic " << magic);
408  }
409  }
410  }
411  NS_FATAL_ERROR("Did not get the raw socket from the socket creator");
412  }
413  NS_FATAL_ERROR("Should be unreachable");
414  return 0; // Silence compiler warning about lack of return value
415 }
416 
417 } // namespace ns3
std::string m_deviceName
The Unix/Linux name of the underlying device (e.g., eth0)
virtual Ptr< NetDevice > InstallPriv(Ptr< Node > node) const
This method creates an ns3::FdNetDevice and associates it to a node.
a NetDevice to read/write network traffic from/into a file descriptor.
Definition: fd-net-device.h:84
@ DIXPI
When using TAP devices, if flag IFF_NO_PI is not set on the device, IP packets will have an extra hea...
Definition: fd-net-device.h:99
Ipv4 addresses are stored in host order in this class.
Definition: ipv4-address.h:42
static Ipv4Address GetZero()
a class to represent an Ipv4 address mask
Definition: ipv4-address.h:257
static Ipv4Mask GetZero()
Describes an IPv6 address.
Definition: ipv6-address.h:49
static Ipv6Address GetZero()
Get the 0 (::) Ipv6Address.
an EUI-48 address
Definition: mac48-address.h:46
static Mac48Address Allocate()
Allocate a new Mac48Address.
Smart pointer class similar to boost::intrusive_ptr.
Definition: ptr.h:77
int CreateFileDescriptor() const override
Call out to a separate process running as suid root in order to create a TAP device and obtain the fi...
void SetTapMacAddress(Mac48Address mac)
Set the MAC address for the TAP device.
bool m_modePi
The TAP device flag IFF_NO_PI.
void SetTapIpv6Prefix(int prefix)
Set the IPv6 network mask for the TAP device.
Ipv6Address m_tapIp6
The IPv6 address for the TAP device.
Ptr< NetDevice > InstallPriv(Ptr< Node > node) const override
This method creates an ns3::FdNetDevice attached to a virtual TAP network interface.
void SetTapIpv4Mask(Ipv4Mask mask)
Set the IPv4 network mask for the TAP device.
Ipv4Mask m_tapMask4
The network mask IPv4 for the TAP device.
Ipv4Address m_tapIp4
The IPv4 address for the TAP device.
TapFdNetDeviceHelper()
Construct a TapFdNetDeviceHelper.
Mac48Address m_tapMac
The TAP device MAC address.
int m_tapPrefix6
The network prefix IPv6 for the TAP device.
void SetTapIpv4Address(Ipv4Address address)
Set the device IPv4 address.
void SetModePi(bool pi)
Set flag IFF_NO_PI on the device.
void SetTapIpv6Address(Ipv6Address address)
Set the device IPv6 address.
void SetFileDescriptor(Ptr< FdNetDevice > device) const override
Sets a file descriptor on the FileDescriptorNetDevice.
#define NS_ASSERT_MSG(condition, message)
At runtime, in debugging builds, if this condition is not true, the program prints the message to out...
Definition: assert.h:86
#define NS_FATAL_ERROR(msg)
Report a fatal error with a message and terminate.
Definition: fatal-error.h:179
#define NS_ABORT_MSG_IF(cond, msg)
Abnormal program termination if a condition is true, with a message.
Definition: abort.h:108
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition: log.h:202
#define NS_LOG_DEBUG(msg)
Use NS_LOG to output a message of level LOG_DEBUG.
Definition: log.h:268
#define NS_LOG_LOGIC(msg)
Use NS_LOG to output a message of level LOG_LOGIC.
Definition: log.h:282
#define NS_LOG_FUNCTION(parameters)
If log level LOG_FUNCTION is enabled, this macro will output all input parameters separated by ",...
#define NS_LOG_INFO(msg)
Use NS_LOG to output a message of level LOG_INFO.
Definition: log.h:275
address
Definition: first.py:47
Every class exported by the ns3 library is enclosed in the ns3 namespace.
std::string BufferToString(uint8_t *buffer, uint32_t len)
Convert a byte buffer to a string containing a hex representation of the buffer.
mac
Definition: third.py:92
ns3::StringValue attribute value declarations.
#define TAP_MAGIC