60 const double m1 = 4294967087.0;
63 const double m2 = 4294944443.0;
66 const double norm = 1.0 / (
m1 + 1.0);
69 const double a12 = 1403580.0;
72 const double a13n = 810728.0;
75 const double a21 = 527612.0;
78 const double a23n = 1370589.0;
84 const double two53 = 9007199254740992.0;
90 { -810728.0, 1403580.0, 0.0 }
97 { -1370589.0, 0.0, 527612.0 }
114 double MultModM (
double a,
double s,
double c,
double m)
123 a1 =
static_cast<int32_t
> (a /
two17);
126 a1 =
static_cast<int32_t
> (v /
m);
128 v = v *
two17 + a * s + c;
131 a1 =
static_cast<int32_t
> (v /
m);
133 if ((v -= a1 *
m) < 0.0)
160 for (i = 0; i < 3; ++i)
166 for (i = 0; i < 3; ++i)
191 for (i = 0; i < 3; ++i)
193 for (j = 0; j < 3; ++j)
198 for (j = 0; j < 3; ++j)
203 for (i = 0; i < 3; ++i)
205 for (j = 0; j < 3; ++j)
228 for (i = 0; i < 3; ++i)
230 for (j = 0; j < 3; ++j)
232 dst[i][j] = src[i][j];
236 for (i = 0; i < e; i++)
252 void MatPowModM (
const double A[3][3],
double B[3][3],
double m, int32_t n)
259 for (i = 0; i < 3; ++i)
261 for (j = 0; j < 3; ++j)
267 for (j = 0; j < 3; ++j)
303 for (
int i = 0; i < 190; i++)
309 return precalculated;
321 for (
int i = 0; i < 3; i ++)
323 for (
int j = 0; j < 3; j++)
325 a1p[i][j] = constants.
a1[n-1][i][j];
326 a2p[i][j] = constants.
a2[n-1][i][j];
349 p1 =
a12 * m_currentState[1] -
a13n * m_currentState[0];
350 k =
static_cast<int32_t
>(p1 /
m1);
356 m_currentState[0] = m_currentState[1];
357 m_currentState[1] = m_currentState[2];
358 m_currentState[2] = p1;
361 p2 =
a21 * m_currentState[5] -
a23n * m_currentState[3];
362 k =
static_cast<int32_t
>(p2 /
m2);
368 m_currentState[3] = m_currentState[4];
369 m_currentState[4] = m_currentState[5];
370 m_currentState[5] = p2;
380 if (seedNumber >=
m1 || seedNumber >=
m2 || seedNumber == 0)
384 for (
int i = 0; i < 6; ++i)
386 m_currentState[i] = seedNumber;
388 AdvanceNthBy(stream, 127, m_currentState);
389 AdvanceNthBy(substream, 76, m_currentState);
394 for (
int i = 0; i < 6; ++i)
405 for (
int i = 0; i < 64; i++)
408 int bit = (nth >> nbit) & 0x1;
Combined Multiple-Recursive Generator MRG32k3a.
RngStream(uint32_t seed, uint64_t stream, uint64_t substream)
Construct from explicit seed, stream and substream values.
double m_currentState[6]
The RNG state vector.
void AdvanceNthBy(uint64_t nth, int by, double state[6])
Advance state of the RNG by leaps and bounds.
double RandU01()
Generate the next random number for this stream.
NS_FATAL_x macro definitions.
#define NS_FATAL_ERROR(msg)
Report a fatal error with a message and terminate.
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Namespace for MRG32k3a implementation details.
const double a21
Second component multiplier of n - 1 value.
const double m1
First component modulus, 232 - 209.
void MatMatModM(const Matrix A, const Matrix B, Matrix C, double m)
Compute the matrix C = A*B MOD m.
const Matrix A1p0
First component transition matrix.
const double a23n
Second component multiplier of n - 3 value.
const double two17
Decomposition factor for computing a*s in less than 53 bits, 217
void PowerOfTwoMatrix(int n, Matrix a1p, Matrix a2p)
Get the transition matrices raised to a power of 2.
const double norm
Normalization to obtain randoms on [0,1).
const double a12
First component multiplier of n - 2 value.
void MatPowModM(const double A[3][3], double B[3][3], double m, int32_t n)
Compute the matrix B = (A^n Mod m); works even if A = B.
void MatTwoPowModM(const Matrix src, Matrix dst, double m, int32_t e)
Compute the matrix B = (A^(2^e) Mod m); works also if A = B.
const Matrix A2p0
Second component transition matrix.
double Matrix[3][3]
Type for 3x3 matrix of doubles.
const double m2
Second component modulus, 232 - 22853.
const double a13n
First component multiplier of n - 3 value.
const double two53
IEEE-754 floating point precision, 253
double MultModM(double a, double s, double c, double m)
Return (a*s + c) MOD m; a, s, c and m must be < 2^35.
void MatVecModM(const Matrix A, const double s[3], double v[3], double m)
Compute the vector v = A*s MOD m.
Precalculated PowerOfTwoConstants()
Compute the transition matrices of the two MRG components raised to all powers of 2 from 1 to 191.
Every class exported by the ns3 library is enclosed in the ns3 namespace.
ns3::RngStream declaration.
The transition matrices of the two MRG components (in matrix form), raised to all powers of 2 from 1 ...
Matrix a1[190]
First component transition matrix powers.
Matrix a2[190]
Second component transition matrix powers.