A Discrete-Event Network Simulator
API
geographic-positions.cc
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2014 University of Washington
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation;
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
16  *
17  * Author: Benjamin Cizdziel <ben.cizdziel@gmail.com>
18  */
19 
20 #include "geographic-positions.h"
21 
22 #include <ns3/log.h>
23 
24 #include <cmath>
25 
26 NS_LOG_COMPONENT_DEFINE("GeographicPositions");
27 
28 namespace ns3
29 {
30 
32 static constexpr double EARTH_RADIUS = 6371e3;
33 
46 static constexpr double EARTH_SEMIMAJOR_AXIS = 6378137;
47 
49 static constexpr double EARTH_GRS80_ECCENTRICITY = 0.0818191910428158;
50 
52 static constexpr double EARTH_WGS84_ECCENTRICITY = 0.0818191908426215;
53 
55 static constexpr double DEG2RAD = M_PI / 180.0;
56 
58 static constexpr double RAD2DEG = 180.0 * M_1_PI;
59 
60 Vector
62  double longitude,
63  double altitude,
64  EarthSpheroidType sphType)
65 {
67  double latitudeRadians = DEG2RAD * latitude;
68  double longitudeRadians = DEG2RAD * longitude;
69  double a; // semi-major axis of earth
70  double e; // first eccentricity of earth
71  if (sphType == SPHERE)
72  {
73  a = EARTH_RADIUS;
74  e = 0;
75  }
76  else if (sphType == GRS80)
77  {
80  }
81  else // if sphType == WGS84
82  {
85  }
86 
87  double Rn = a / (sqrt(1 - pow(e, 2) * pow(sin(latitudeRadians), 2))); // radius of
88  // curvature
89  double x = (Rn + altitude) * cos(latitudeRadians) * cos(longitudeRadians);
90  double y = (Rn + altitude) * cos(latitudeRadians) * sin(longitudeRadians);
91  double z = ((1 - pow(e, 2)) * Rn + altitude) * sin(latitudeRadians);
92  Vector cartesianCoordinates = Vector(x, y, z);
93  return cartesianCoordinates;
94 }
95 
96 Vector
98 {
99  NS_LOG_FUNCTION(pos << sphType);
100 
101  double a; // semi-major axis of earth
102  double e; // first eccentricity of earth
103  if (sphType == SPHERE)
104  {
105  a = EARTH_RADIUS;
106  e = 0;
107  }
108  else if (sphType == GRS80)
109  {
112  }
113  else // if sphType == WGS84
114  {
117  }
118 
119  Vector lla;
120  Vector tmp;
121  lla.y = atan2(pos.y, pos.x); // longitude (rad), in +/- pi
122 
123  double e2 = e * e;
124  // sqrt (pos.x^2 + pos.y^2)
125  double p = CalculateDistance(pos, {0, 0, pos.z});
126  lla.x = atan2(pos.z, p * (1 - e2)); // init latitude (rad), in +/- pi
127 
128  do
129  {
130  tmp = lla;
131  double N = a / sqrt(1 - e2 * sin(tmp.x) * sin(tmp.x));
132  double v = p / cos(tmp.x);
133  lla.z = v - N; // altitude
134  lla.x = atan2(pos.z, p * (1 - e2 * N / v));
135  }
136  // 1 m difference is approx 1 / 30 arc seconds = 9.26e-6 deg
137  while (fabs(lla.x - tmp.x) > 0.00000926 * DEG2RAD);
138 
139  lla.x *= RAD2DEG;
140  lla.y *= RAD2DEG;
141 
142  // canonicalize (latitude) x in [-90, 90] and (longitude) y in [-180, 180)
143  if (lla.x > 90.0)
144  {
145  lla.x = 180 - lla.x;
146  lla.y += lla.y < 0 ? 180 : -180;
147  }
148  else if (lla.x < -90.0)
149  {
150  lla.x = -180 - lla.x;
151  lla.y += lla.y < 0 ? 180 : -180;
152  }
153  if (lla.y == 180.0)
154  {
155  lla.y = -180;
156  }
157 
158  // make sure lat/lon in the right range to double check canonicalization
159  // and conversion routine
160  NS_ASSERT_MSG(-180.0 <= lla.y, "Conversion error: longitude too negative");
161  NS_ASSERT_MSG(180.0 > lla.y, "Conversion error: longitude too positive");
162  NS_ASSERT_MSG(-90.0 <= lla.x, "Conversion error: latitude too negative");
163  NS_ASSERT_MSG(90.0 >= lla.x, "Conversion error: latitude too positive");
164 
165  return lla;
166 }
167 
168 std::list<Vector>
170  double originLongitude,
171  double maxAltitude,
172  int numPoints,
173  double maxDistFromOrigin,
175 {
177  // fixes divide by zero case and limits latitude bounds
178  if (originLatitude >= 90)
179  {
180  NS_LOG_WARN("origin latitude must be less than 90. setting to 89.999");
181  originLatitude = 89.999;
182  }
183  else if (originLatitude <= -90)
184  {
185  NS_LOG_WARN("origin latitude must be greater than -90. setting to -89.999");
186  originLatitude = -89.999;
187  }
188 
189  // restricts maximum altitude from being less than zero (below earth's surface).
190  // sets maximum altitude equal to zero if parameter is set to be less than zero.
191  if (maxAltitude < 0)
192  {
193  NS_LOG_WARN("maximum altitude must be greater than or equal to 0. setting to 0");
194  maxAltitude = 0;
195  }
196 
197  double originLatitudeRadians = originLatitude * DEG2RAD;
198  double originLongitudeRadians = originLongitude * DEG2RAD;
199  double originColatitude = (M_PI_2)-originLatitudeRadians;
200 
201  double a = maxDistFromOrigin / EARTH_RADIUS; // maximum alpha allowed
202  // (arc length formula)
203  if (a > M_PI)
204  {
205  a = M_PI; // pi is largest alpha possible (polar angle from origin that
206  // points can be generated within)
207  }
208 
209  std::list<Vector> generatedPoints;
210  for (int i = 0; i < numPoints; i++)
211  {
212  // random distance from North Pole (towards center of earth)
213  double d = uniRand->GetValue(0, EARTH_RADIUS - EARTH_RADIUS * cos(a));
214  // random angle in latitude slice (wrt Prime Meridian), radians
215  double phi = uniRand->GetValue(0, M_PI * 2);
216  // random angle from Center of Earth (wrt North Pole), radians
217  double alpha = acos((EARTH_RADIUS - d) / EARTH_RADIUS);
218 
219  // shift coordinate system from North Pole referred to origin point referred
220  // reference: http://en.wikibooks.org/wiki/General_Astronomy/Coordinate_Systems
221  double theta = M_PI_2 - alpha; // angle of elevation of new point wrt
222  // origin point (latitude in coordinate
223  // system referred to origin point)
224  double randPointLatitude = asin(sin(theta) * cos(originColatitude) +
225  cos(theta) * sin(originColatitude) * sin(phi));
226  // declination
227  double intermedLong = asin((sin(randPointLatitude) * cos(originColatitude) - sin(theta)) /
228  (cos(randPointLatitude) * sin(originColatitude)));
229  // right ascension
230  intermedLong = intermedLong + M_PI_2; // shift to longitude 0
231 
232  // flip / mirror point if it has phi in quadrant II or III (wasn't
233  // resolved correctly by arcsin) across longitude 0
234  if (phi > (M_PI_2) && phi <= (3 * M_PI_2))
235  {
236  intermedLong = -intermedLong;
237  }
238 
239  // shift longitude to be referenced to origin
240  double randPointLongitude = intermedLong + originLongitudeRadians;
241 
242  // random altitude above earth's surface
243  double randAltitude = uniRand->GetValue(0, maxAltitude);
244 
245  Vector pointPosition =
247  randPointLongitude * RAD2DEG,
248  randAltitude,
249  SPHERE);
250  // convert coordinates
251  // from geographic to cartesian
252 
253  generatedPoints.push_back(pointPosition); // add generated coordinate
254  // points to list
255  }
256  return generatedPoints;
257 }
258 
259 } // namespace ns3
static std::list< Vector > RandCartesianPointsAroundGeographicPoint(double originLatitude, double originLongitude, double maxAltitude, int numPoints, double maxDistFromOrigin, Ptr< UniformRandomVariable > uniRand)
Generates uniformly distributed random points (in ECEF Cartesian coordinates) within a given altitude...
EarthSpheroidType
Spheroid model to use for earth: perfect sphere (SPHERE), Geodetic Reference System 1980 (GRS80),...
static Vector GeographicToCartesianCoordinates(double latitude, double longitude, double altitude, EarthSpheroidType sphType)
Converts earth geographic/geodetic coordinates (latitude and longitude in degrees) with a given altit...
static Vector CartesianToGeographicCoordinates(Vector pos, EarthSpheroidType sphType)
Inverse of GeographicToCartesianCoordinates using [1].
double GetValue(double min, double max)
Get the next random value drawn from the distribution.
#define NS_ASSERT_MSG(condition, message)
At runtime, in debugging builds, if this condition is not true, the program prints the message to out...
Definition: assert.h:86
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition: log.h:202
#define NS_LOG_FUNCTION_NOARGS()
Output the name of the function.
#define NS_LOG_FUNCTION(parameters)
If log level LOG_FUNCTION is enabled, this macro will output all input parameters separated by ",...
#define NS_LOG_WARN(msg)
Use NS_LOG to output a message of level LOG_WARN.
Definition: log.h:261
Every class exported by the ns3 library is enclosed in the ns3 namespace.
static constexpr double DEG2RAD
Conversion factor: degrees to radians.
static constexpr double EARTH_GRS80_ECCENTRICITY
Earth's first eccentricity as defined by GRS80.
static constexpr double EARTH_RADIUS
Earth's radius in meters if modeled as a perfect sphere.
static constexpr double EARTH_SEMIMAJOR_AXIS
GRS80 and WGS84 sources.
static constexpr double RAD2DEG
Conversion factor: radians to degrees.
double CalculateDistance(const Vector3D &a, const Vector3D &b)
Definition: vector.cc:109
static constexpr double EARTH_WGS84_ECCENTRICITY
Earth's first eccentricity as defined by WGS84.