A Discrete-Event Network Simulator
API
fdbet-ff-mac-scheduler.cc
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2011 Centre Tecnologic de Telecomunicacions de Catalunya (CTTC)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation;
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
16  *
17  * Author: Marco Miozzo <marco.miozzo@cttc.es>
18  * Modification: Dizhi Zhou <dizhi.zhou@gmail.com> // modify codes related to downlink scheduler
19  */
20 
21 #include "fdbet-ff-mac-scheduler.h"
22 
23 #include "lte-amc.h"
25 
26 #include <ns3/boolean.h>
27 #include <ns3/log.h>
28 #include <ns3/math.h>
29 #include <ns3/pointer.h>
30 #include <ns3/simulator.h>
31 
32 #include <cfloat>
33 #include <set>
34 
35 namespace ns3
36 {
37 
38 NS_LOG_COMPONENT_DEFINE("FdBetFfMacScheduler");
39 
41 static const int FdBetType0AllocationRbg[4] = {
42  10, // RGB size 1
43  26, // RGB size 2
44  63, // RGB size 3
45  110, // RGB size 4
46 }; // see table 7.1.6.1-1 of 36.213
47 
48 NS_OBJECT_ENSURE_REGISTERED(FdBetFfMacScheduler);
49 
51  : m_cschedSapUser(nullptr),
52  m_schedSapUser(nullptr),
53  m_timeWindow(99.0),
54  m_nextRntiUl(0)
55 {
56  m_amc = CreateObject<LteAmc>();
59 }
60 
62 {
63  NS_LOG_FUNCTION(this);
64 }
65 
66 void
68 {
69  NS_LOG_FUNCTION(this);
71  m_dlHarqProcessesTimer.clear();
73  m_dlInfoListBuffered.clear();
77  delete m_cschedSapProvider;
78  delete m_schedSapProvider;
79 }
80 
81 TypeId
83 {
84  static TypeId tid =
85  TypeId("ns3::FdBetFfMacScheduler")
87  .SetGroupName("Lte")
88  .AddConstructor<FdBetFfMacScheduler>()
89  .AddAttribute("CqiTimerThreshold",
90  "The number of TTIs a CQI is valid (default 1000 - 1 sec.)",
91  UintegerValue(1000),
93  MakeUintegerChecker<uint32_t>())
94  .AddAttribute("HarqEnabled",
95  "Activate/Deactivate the HARQ [by default is active].",
96  BooleanValue(true),
99  .AddAttribute("UlGrantMcs",
100  "The MCS of the UL grant, must be [0..15] (default 0)",
101  UintegerValue(0),
103  MakeUintegerChecker<uint8_t>());
104  return tid;
105 }
106 
107 void
109 {
110  m_cschedSapUser = s;
111 }
112 
113 void
115 {
116  m_schedSapUser = s;
117 }
118 
121 {
122  return m_cschedSapProvider;
123 }
124 
127 {
128  return m_schedSapProvider;
129 }
130 
131 void
133 {
134  m_ffrSapProvider = s;
135 }
136 
139 {
140  return m_ffrSapUser;
141 }
142 
143 void
146 {
147  NS_LOG_FUNCTION(this);
148  // Read the subset of parameters used
152  cnf.m_result = SUCCESS;
154 }
155 
156 void
159 {
160  NS_LOG_FUNCTION(this << " RNTI " << params.m_rnti << " txMode "
161  << (uint16_t)params.m_transmissionMode);
162  auto it = m_uesTxMode.find(params.m_rnti);
163  if (it == m_uesTxMode.end())
164  {
165  m_uesTxMode.insert(std::pair<uint16_t, double>(params.m_rnti, params.m_transmissionMode));
166  // generate HARQ buffers
167  m_dlHarqCurrentProcessId.insert(std::pair<uint16_t, uint8_t>(params.m_rnti, 0));
168  DlHarqProcessesStatus_t dlHarqPrcStatus;
169  dlHarqPrcStatus.resize(8, 0);
170  m_dlHarqProcessesStatus[params.m_rnti] = dlHarqPrcStatus;
171  DlHarqProcessesTimer_t dlHarqProcessesTimer;
172  dlHarqProcessesTimer.resize(8, 0);
173  m_dlHarqProcessesTimer[params.m_rnti] = dlHarqProcessesTimer;
174  DlHarqProcessesDciBuffer_t dlHarqdci;
175  dlHarqdci.resize(8);
176  m_dlHarqProcessesDciBuffer[params.m_rnti] = dlHarqdci;
177  DlHarqRlcPduListBuffer_t dlHarqRlcPdu;
178  dlHarqRlcPdu.resize(2);
179  dlHarqRlcPdu.at(0).resize(8);
180  dlHarqRlcPdu.at(1).resize(8);
181  m_dlHarqProcessesRlcPduListBuffer[params.m_rnti] = dlHarqRlcPdu;
182  m_ulHarqCurrentProcessId.insert(std::pair<uint16_t, uint8_t>(params.m_rnti, 0));
183  UlHarqProcessesStatus_t ulHarqPrcStatus;
184  ulHarqPrcStatus.resize(8, 0);
185  m_ulHarqProcessesStatus[params.m_rnti] = ulHarqPrcStatus;
186  UlHarqProcessesDciBuffer_t ulHarqdci;
187  ulHarqdci.resize(8);
188  m_ulHarqProcessesDciBuffer[params.m_rnti] = ulHarqdci;
189  }
190  else
191  {
192  (*it).second = params.m_transmissionMode;
193  }
194 }
195 
196 void
199 {
200  NS_LOG_FUNCTION(this << " New LC, rnti: " << params.m_rnti);
201 
202  for (std::size_t i = 0; i < params.m_logicalChannelConfigList.size(); i++)
203  {
204  auto it = m_flowStatsDl.find(params.m_rnti);
205 
206  if (it == m_flowStatsDl.end())
207  {
208  fdbetsFlowPerf_t flowStatsDl;
209  flowStatsDl.flowStart = Simulator::Now();
210  flowStatsDl.totalBytesTransmitted = 0;
211  flowStatsDl.lastTtiBytesTransmitted = 0;
212  flowStatsDl.lastAveragedThroughput = 1;
213  m_flowStatsDl.insert(std::pair<uint16_t, fdbetsFlowPerf_t>(params.m_rnti, flowStatsDl));
214  fdbetsFlowPerf_t flowStatsUl;
215  flowStatsUl.flowStart = Simulator::Now();
216  flowStatsUl.totalBytesTransmitted = 0;
217  flowStatsUl.lastTtiBytesTransmitted = 0;
218  flowStatsUl.lastAveragedThroughput = 1;
219  m_flowStatsUl.insert(std::pair<uint16_t, fdbetsFlowPerf_t>(params.m_rnti, flowStatsUl));
220  }
221  }
222 }
223 
224 void
227 {
228  NS_LOG_FUNCTION(this);
229  for (std::size_t i = 0; i < params.m_logicalChannelIdentity.size(); i++)
230  {
231  auto it = m_rlcBufferReq.begin();
232  while (it != m_rlcBufferReq.end())
233  {
234  if (((*it).first.m_rnti == params.m_rnti) &&
235  ((*it).first.m_lcId == params.m_logicalChannelIdentity.at(i)))
236  {
237  auto temp = it;
238  it++;
239  m_rlcBufferReq.erase(temp);
240  }
241  else
242  {
243  it++;
244  }
245  }
246  }
247 }
248 
249 void
252 {
253  NS_LOG_FUNCTION(this);
254 
255  m_uesTxMode.erase(params.m_rnti);
256  m_dlHarqCurrentProcessId.erase(params.m_rnti);
257  m_dlHarqProcessesStatus.erase(params.m_rnti);
258  m_dlHarqProcessesTimer.erase(params.m_rnti);
259  m_dlHarqProcessesDciBuffer.erase(params.m_rnti);
261  m_ulHarqCurrentProcessId.erase(params.m_rnti);
262  m_ulHarqProcessesStatus.erase(params.m_rnti);
263  m_ulHarqProcessesDciBuffer.erase(params.m_rnti);
264  m_flowStatsDl.erase(params.m_rnti);
265  m_flowStatsUl.erase(params.m_rnti);
266  m_ceBsrRxed.erase(params.m_rnti);
267  auto it = m_rlcBufferReq.begin();
268  while (it != m_rlcBufferReq.end())
269  {
270  if ((*it).first.m_rnti == params.m_rnti)
271  {
272  auto temp = it;
273  it++;
274  m_rlcBufferReq.erase(temp);
275  }
276  else
277  {
278  it++;
279  }
280  }
281  if (m_nextRntiUl == params.m_rnti)
282  {
283  m_nextRntiUl = 0;
284  }
285 }
286 
287 void
290 {
291  NS_LOG_FUNCTION(this << params.m_rnti << (uint32_t)params.m_logicalChannelIdentity);
292  // API generated by RLC for updating RLC parameters on a LC (tx and retx queues)
293 
294  LteFlowId_t flow(params.m_rnti, params.m_logicalChannelIdentity);
295 
296  auto it = m_rlcBufferReq.find(flow);
297 
298  if (it == m_rlcBufferReq.end())
299  {
300  m_rlcBufferReq[flow] = params;
301  }
302  else
303  {
304  (*it).second = params;
305  }
306 }
307 
308 void
311 {
312  NS_LOG_FUNCTION(this);
313  NS_FATAL_ERROR("method not implemented");
314 }
315 
316 void
319 {
320  NS_LOG_FUNCTION(this);
321  NS_FATAL_ERROR("method not implemented");
322 }
323 
324 int
326 {
327  for (int i = 0; i < 4; i++)
328  {
329  if (dlbandwidth < FdBetType0AllocationRbg[i])
330  {
331  return i + 1;
332  }
333  }
334 
335  return -1;
336 }
337 
338 unsigned int
340 {
341  unsigned int lcActive = 0;
342  for (auto it = m_rlcBufferReq.begin(); it != m_rlcBufferReq.end(); it++)
343  {
344  if (((*it).first.m_rnti == rnti) && (((*it).second.m_rlcTransmissionQueueSize > 0) ||
345  ((*it).second.m_rlcRetransmissionQueueSize > 0) ||
346  ((*it).second.m_rlcStatusPduSize > 0)))
347  {
348  lcActive++;
349  }
350  if ((*it).first.m_rnti > rnti)
351  {
352  break;
353  }
354  }
355  return lcActive;
356 }
357 
358 bool
360 {
361  NS_LOG_FUNCTION(this << rnti);
362 
363  auto it = m_dlHarqCurrentProcessId.find(rnti);
364  if (it == m_dlHarqCurrentProcessId.end())
365  {
366  NS_FATAL_ERROR("No Process Id found for this RNTI " << rnti);
367  }
368  auto itStat = m_dlHarqProcessesStatus.find(rnti);
369  if (itStat == m_dlHarqProcessesStatus.end())
370  {
371  NS_FATAL_ERROR("No Process Id Statusfound for this RNTI " << rnti);
372  }
373  uint8_t i = (*it).second;
374  do
375  {
376  i = (i + 1) % HARQ_PROC_NUM;
377  } while (((*itStat).second.at(i) != 0) && (i != (*it).second));
378 
379  return (*itStat).second.at(i) == 0;
380 }
381 
382 uint8_t
384 {
385  NS_LOG_FUNCTION(this << rnti);
386 
387  if (!m_harqOn)
388  {
389  return 0;
390  }
391 
392  auto it = m_dlHarqCurrentProcessId.find(rnti);
393  if (it == m_dlHarqCurrentProcessId.end())
394  {
395  NS_FATAL_ERROR("No Process Id found for this RNTI " << rnti);
396  }
397  auto itStat = m_dlHarqProcessesStatus.find(rnti);
398  if (itStat == m_dlHarqProcessesStatus.end())
399  {
400  NS_FATAL_ERROR("No Process Id Statusfound for this RNTI " << rnti);
401  }
402  uint8_t i = (*it).second;
403  do
404  {
405  i = (i + 1) % HARQ_PROC_NUM;
406  } while (((*itStat).second.at(i) != 0) && (i != (*it).second));
407  if ((*itStat).second.at(i) == 0)
408  {
409  (*it).second = i;
410  (*itStat).second.at(i) = 1;
411  }
412  else
413  {
414  NS_FATAL_ERROR("No HARQ process available for RNTI "
415  << rnti << " check before update with HarqProcessAvailability");
416  }
417 
418  return (*it).second;
419 }
420 
421 void
423 {
424  NS_LOG_FUNCTION(this);
425 
426  for (auto itTimers = m_dlHarqProcessesTimer.begin(); itTimers != m_dlHarqProcessesTimer.end();
427  itTimers++)
428  {
429  for (uint16_t i = 0; i < HARQ_PROC_NUM; i++)
430  {
431  if ((*itTimers).second.at(i) == HARQ_DL_TIMEOUT)
432  {
433  // reset HARQ process
434 
435  NS_LOG_DEBUG(this << " Reset HARQ proc " << i << " for RNTI " << (*itTimers).first);
436  auto itStat = m_dlHarqProcessesStatus.find((*itTimers).first);
437  if (itStat == m_dlHarqProcessesStatus.end())
438  {
439  NS_FATAL_ERROR("No Process Id Status found for this RNTI "
440  << (*itTimers).first);
441  }
442  (*itStat).second.at(i) = 0;
443  (*itTimers).second.at(i) = 0;
444  }
445  else
446  {
447  (*itTimers).second.at(i)++;
448  }
449  }
450  }
451 }
452 
453 void
456 {
457  NS_LOG_FUNCTION(this << " Frame no. " << (params.m_sfnSf >> 4) << " subframe no. "
458  << (0xF & params.m_sfnSf));
459  // API generated by RLC for triggering the scheduling of a DL subframe
460 
461  // evaluate the relative channel quality indicator for each UE per each RBG
462  // (since we are using allocation type 0 the small unit of allocation is RBG)
463  // Resource allocation type 0 (see sec 7.1.6.1 of 36.213)
464 
466 
468  int rbgNum = m_cschedCellConfig.m_dlBandwidth / rbgSize;
469  std::map<uint16_t, std::vector<uint16_t>> allocationMap; // RBs map per RNTI
470  std::vector<bool> rbgMap; // global RBGs map
471  uint16_t rbgAllocatedNum = 0;
472  std::set<uint16_t> rntiAllocated;
473  rbgMap.resize(m_cschedCellConfig.m_dlBandwidth / rbgSize, false);
475 
476  // update UL HARQ proc id
477  for (auto itProcId = m_ulHarqCurrentProcessId.begin();
478  itProcId != m_ulHarqCurrentProcessId.end();
479  itProcId++)
480  {
481  (*itProcId).second = ((*itProcId).second + 1) % HARQ_PROC_NUM;
482  }
483 
484  // RACH Allocation
486  uint16_t rbStart = 0;
487  for (auto itRach = m_rachList.begin(); itRach != m_rachList.end(); itRach++)
488  {
490  (*itRach).m_estimatedSize,
491  " Default UL Grant MCS does not allow to send RACH messages");
492  BuildRarListElement_s newRar;
493  newRar.m_rnti = (*itRach).m_rnti;
494  // DL-RACH Allocation
495  // Ideal: no needs of configuring m_dci
496  // UL-RACH Allocation
497  newRar.m_grant.m_rnti = newRar.m_rnti;
498  newRar.m_grant.m_mcs = m_ulGrantMcs;
499  uint16_t rbLen = 1;
500  uint16_t tbSizeBits = 0;
501  // find lowest TB size that fits UL grant estimated size
502  while ((tbSizeBits < (*itRach).m_estimatedSize) &&
503  (rbStart + rbLen < m_cschedCellConfig.m_ulBandwidth))
504  {
505  rbLen++;
506  tbSizeBits = m_amc->GetUlTbSizeFromMcs(m_ulGrantMcs, rbLen);
507  }
508  if (tbSizeBits < (*itRach).m_estimatedSize)
509  {
510  // no more allocation space: finish allocation
511  break;
512  }
513  newRar.m_grant.m_rbStart = rbStart;
514  newRar.m_grant.m_rbLen = rbLen;
515  newRar.m_grant.m_tbSize = tbSizeBits / 8;
516  newRar.m_grant.m_hopping = false;
517  newRar.m_grant.m_tpc = 0;
518  newRar.m_grant.m_cqiRequest = false;
519  newRar.m_grant.m_ulDelay = false;
520  NS_LOG_INFO(this << " UL grant allocated to RNTI " << (*itRach).m_rnti << " rbStart "
521  << rbStart << " rbLen " << rbLen << " MCS " << m_ulGrantMcs << " tbSize "
522  << newRar.m_grant.m_tbSize);
523  for (uint16_t i = rbStart; i < rbStart + rbLen; i++)
524  {
525  m_rachAllocationMap.at(i) = (*itRach).m_rnti;
526  }
527 
528  if (m_harqOn)
529  {
530  // generate UL-DCI for HARQ retransmissions
531  UlDciListElement_s uldci;
532  uldci.m_rnti = newRar.m_rnti;
533  uldci.m_rbLen = rbLen;
534  uldci.m_rbStart = rbStart;
535  uldci.m_mcs = m_ulGrantMcs;
536  uldci.m_tbSize = tbSizeBits / 8;
537  uldci.m_ndi = 1;
538  uldci.m_cceIndex = 0;
539  uldci.m_aggrLevel = 1;
540  uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
541  uldci.m_hopping = false;
542  uldci.m_n2Dmrs = 0;
543  uldci.m_tpc = 0; // no power control
544  uldci.m_cqiRequest = false; // only period CQI at this stage
545  uldci.m_ulIndex = 0; // TDD parameter
546  uldci.m_dai = 1; // TDD parameter
547  uldci.m_freqHopping = 0;
548  uldci.m_pdcchPowerOffset = 0; // not used
549 
550  uint8_t harqId = 0;
551  auto itProcId = m_ulHarqCurrentProcessId.find(uldci.m_rnti);
552  if (itProcId == m_ulHarqCurrentProcessId.end())
553  {
554  NS_FATAL_ERROR("No info find in HARQ buffer for UE " << uldci.m_rnti);
555  }
556  harqId = (*itProcId).second;
557  auto itDci = m_ulHarqProcessesDciBuffer.find(uldci.m_rnti);
558  if (itDci == m_ulHarqProcessesDciBuffer.end())
559  {
560  NS_FATAL_ERROR("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI "
561  << uldci.m_rnti);
562  }
563  (*itDci).second.at(harqId) = uldci;
564  }
565 
566  rbStart = rbStart + rbLen;
567  ret.m_buildRarList.push_back(newRar);
568  }
569  m_rachList.clear();
570 
571  // Process DL HARQ feedback
573  // retrieve past HARQ retx buffered
574  if (!m_dlInfoListBuffered.empty())
575  {
576  if (!params.m_dlInfoList.empty())
577  {
578  NS_LOG_INFO(this << " Received DL-HARQ feedback");
580  params.m_dlInfoList.begin(),
581  params.m_dlInfoList.end());
582  }
583  }
584  else
585  {
586  if (!params.m_dlInfoList.empty())
587  {
588  m_dlInfoListBuffered = params.m_dlInfoList;
589  }
590  }
591  if (!m_harqOn)
592  {
593  // Ignore HARQ feedback
594  m_dlInfoListBuffered.clear();
595  }
596  std::vector<DlInfoListElement_s> dlInfoListUntxed;
597  for (std::size_t i = 0; i < m_dlInfoListBuffered.size(); i++)
598  {
599  auto itRnti = rntiAllocated.find(m_dlInfoListBuffered.at(i).m_rnti);
600  if (itRnti != rntiAllocated.end())
601  {
602  // RNTI already allocated for retx
603  continue;
604  }
605  auto nLayers = m_dlInfoListBuffered.at(i).m_harqStatus.size();
606  std::vector<bool> retx;
607  NS_LOG_INFO(this << " Processing DLHARQ feedback");
608  if (nLayers == 1)
609  {
610  retx.push_back(m_dlInfoListBuffered.at(i).m_harqStatus.at(0) ==
612  retx.push_back(false);
613  }
614  else
615  {
616  retx.push_back(m_dlInfoListBuffered.at(i).m_harqStatus.at(0) ==
618  retx.push_back(m_dlInfoListBuffered.at(i).m_harqStatus.at(1) ==
620  }
621  if (retx.at(0) || retx.at(1))
622  {
623  // retrieve HARQ process information
624  uint16_t rnti = m_dlInfoListBuffered.at(i).m_rnti;
625  uint8_t harqId = m_dlInfoListBuffered.at(i).m_harqProcessId;
626  NS_LOG_INFO(this << " HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId);
627  auto itHarq = m_dlHarqProcessesDciBuffer.find(rnti);
628  if (itHarq == m_dlHarqProcessesDciBuffer.end())
629  {
630  NS_FATAL_ERROR("No info find in HARQ buffer for UE " << rnti);
631  }
632 
633  DlDciListElement_s dci = (*itHarq).second.at(harqId);
634  int rv = 0;
635  if (dci.m_rv.size() == 1)
636  {
637  rv = dci.m_rv.at(0);
638  }
639  else
640  {
641  rv = (dci.m_rv.at(0) > dci.m_rv.at(1) ? dci.m_rv.at(0) : dci.m_rv.at(1));
642  }
643 
644  if (rv == 3)
645  {
646  // maximum number of retx reached -> drop process
647  NS_LOG_INFO("Maximum number of retransmissions reached -> drop process");
648  auto it = m_dlHarqProcessesStatus.find(rnti);
649  if (it == m_dlHarqProcessesStatus.end())
650  {
651  NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) "
652  << m_dlInfoListBuffered.at(i).m_rnti);
653  }
654  (*it).second.at(harqId) = 0;
655  auto itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find(rnti);
656  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end())
657  {
658  NS_FATAL_ERROR("Unable to find RlcPdcList in HARQ buffer for RNTI "
659  << m_dlInfoListBuffered.at(i).m_rnti);
660  }
661  for (std::size_t k = 0; k < (*itRlcPdu).second.size(); k++)
662  {
663  (*itRlcPdu).second.at(k).at(harqId).clear();
664  }
665  continue;
666  }
667  // check the feasibility of retransmitting on the same RBGs
668  // translate the DCI to Spectrum framework
669  std::vector<int> dciRbg;
670  uint32_t mask = 0x1;
671  NS_LOG_INFO("Original RBGs " << dci.m_rbBitmap << " rnti " << dci.m_rnti);
672  for (int j = 0; j < 32; j++)
673  {
674  if (((dci.m_rbBitmap & mask) >> j) == 1)
675  {
676  dciRbg.push_back(j);
677  NS_LOG_INFO("\t" << j);
678  }
679  mask = (mask << 1);
680  }
681  bool free = true;
682  for (std::size_t j = 0; j < dciRbg.size(); j++)
683  {
684  if (rbgMap.at(dciRbg.at(j)))
685  {
686  free = false;
687  break;
688  }
689  }
690  if (free)
691  {
692  // use the same RBGs for the retx
693  // reserve RBGs
694  for (std::size_t j = 0; j < dciRbg.size(); j++)
695  {
696  rbgMap.at(dciRbg.at(j)) = true;
697  NS_LOG_INFO("RBG " << dciRbg.at(j) << " assigned");
698  rbgAllocatedNum++;
699  }
700 
701  NS_LOG_INFO(this << " Send retx in the same RBGs");
702  }
703  else
704  {
705  // find RBGs for sending HARQ retx
706  uint8_t j = 0;
707  uint8_t rbgId = (dciRbg.at(dciRbg.size() - 1) + 1) % rbgNum;
708  uint8_t startRbg = dciRbg.at(dciRbg.size() - 1);
709  std::vector<bool> rbgMapCopy = rbgMap;
710  while ((j < dciRbg.size()) && (startRbg != rbgId))
711  {
712  if (!rbgMapCopy.at(rbgId))
713  {
714  rbgMapCopy.at(rbgId) = true;
715  dciRbg.at(j) = rbgId;
716  j++;
717  }
718  rbgId = (rbgId + 1) % rbgNum;
719  }
720  if (j == dciRbg.size())
721  {
722  // find new RBGs -> update DCI map
723  uint32_t rbgMask = 0;
724  for (std::size_t k = 0; k < dciRbg.size(); k++)
725  {
726  rbgMask = rbgMask + (0x1 << dciRbg.at(k));
727  rbgAllocatedNum++;
728  }
729  dci.m_rbBitmap = rbgMask;
730  rbgMap = rbgMapCopy;
731  NS_LOG_INFO(this << " Move retx in RBGs " << dciRbg.size());
732  }
733  else
734  {
735  // HARQ retx cannot be performed on this TTI -> store it
736  dlInfoListUntxed.push_back(m_dlInfoListBuffered.at(i));
737  NS_LOG_INFO(this << " No resource for this retx -> buffer it");
738  }
739  }
740  // retrieve RLC PDU list for retx TBsize and update DCI
742  auto itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find(rnti);
743  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end())
744  {
745  NS_FATAL_ERROR("Unable to find RlcPdcList in HARQ buffer for RNTI " << rnti);
746  }
747  for (std::size_t j = 0; j < nLayers; j++)
748  {
749  if (retx.at(j))
750  {
751  if (j >= dci.m_ndi.size())
752  {
753  // for avoiding errors in MIMO transient phases
754  dci.m_ndi.push_back(0);
755  dci.m_rv.push_back(0);
756  dci.m_mcs.push_back(0);
757  dci.m_tbsSize.push_back(0);
758  NS_LOG_INFO(this << " layer " << (uint16_t)j
759  << " no txed (MIMO transition)");
760  }
761  else
762  {
763  dci.m_ndi.at(j) = 0;
764  dci.m_rv.at(j)++;
765  (*itHarq).second.at(harqId).m_rv.at(j)++;
766  NS_LOG_INFO(this << " layer " << (uint16_t)j << " RV "
767  << (uint16_t)dci.m_rv.at(j));
768  }
769  }
770  else
771  {
772  // empty TB of layer j
773  dci.m_ndi.at(j) = 0;
774  dci.m_rv.at(j) = 0;
775  dci.m_mcs.at(j) = 0;
776  dci.m_tbsSize.at(j) = 0;
777  NS_LOG_INFO(this << " layer " << (uint16_t)j << " no retx");
778  }
779  }
780  for (std::size_t k = 0; k < (*itRlcPdu).second.at(0).at(dci.m_harqProcess).size(); k++)
781  {
782  std::vector<RlcPduListElement_s> rlcPduListPerLc;
783  for (std::size_t j = 0; j < nLayers; j++)
784  {
785  if (retx.at(j))
786  {
787  if (j < dci.m_ndi.size())
788  {
789  NS_LOG_INFO(" layer " << (uint16_t)j << " tb size "
790  << dci.m_tbsSize.at(j));
791  rlcPduListPerLc.push_back(
792  (*itRlcPdu).second.at(j).at(dci.m_harqProcess).at(k));
793  }
794  }
795  else
796  { // if no retx needed on layer j, push an RlcPduListElement_s object with
797  // m_size=0 to keep the size of rlcPduListPerLc vector = 2 in case of MIMO
798  NS_LOG_INFO(" layer " << (uint16_t)j << " tb size " << dci.m_tbsSize.at(j));
799  RlcPduListElement_s emptyElement;
800  emptyElement.m_logicalChannelIdentity = (*itRlcPdu)
801  .second.at(j)
802  .at(dci.m_harqProcess)
803  .at(k)
804  .m_logicalChannelIdentity;
805  emptyElement.m_size = 0;
806  rlcPduListPerLc.push_back(emptyElement);
807  }
808  }
809 
810  if (!rlcPduListPerLc.empty())
811  {
812  newEl.m_rlcPduList.push_back(rlcPduListPerLc);
813  }
814  }
815  newEl.m_rnti = rnti;
816  newEl.m_dci = dci;
817  (*itHarq).second.at(harqId).m_rv = dci.m_rv;
818  // refresh timer
819  auto itHarqTimer = m_dlHarqProcessesTimer.find(rnti);
820  if (itHarqTimer == m_dlHarqProcessesTimer.end())
821  {
822  NS_FATAL_ERROR("Unable to find HARQ timer for RNTI " << (uint16_t)rnti);
823  }
824  (*itHarqTimer).second.at(harqId) = 0;
825  ret.m_buildDataList.push_back(newEl);
826  rntiAllocated.insert(rnti);
827  }
828  else
829  {
830  // update HARQ process status
831  NS_LOG_INFO(this << " HARQ received ACK for UE " << m_dlInfoListBuffered.at(i).m_rnti);
832  auto it = m_dlHarqProcessesStatus.find(m_dlInfoListBuffered.at(i).m_rnti);
833  if (it == m_dlHarqProcessesStatus.end())
834  {
835  NS_FATAL_ERROR("No info find in HARQ buffer for UE "
836  << m_dlInfoListBuffered.at(i).m_rnti);
837  }
838  (*it).second.at(m_dlInfoListBuffered.at(i).m_harqProcessId) = 0;
839  auto itRlcPdu =
841  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end())
842  {
843  NS_FATAL_ERROR("Unable to find RlcPdcList in HARQ buffer for RNTI "
844  << m_dlInfoListBuffered.at(i).m_rnti);
845  }
846  for (std::size_t k = 0; k < (*itRlcPdu).second.size(); k++)
847  {
848  (*itRlcPdu).second.at(k).at(m_dlInfoListBuffered.at(i).m_harqProcessId).clear();
849  }
850  }
851  }
852  m_dlInfoListBuffered.clear();
853  m_dlInfoListBuffered = dlInfoListUntxed;
854 
855  if (rbgAllocatedNum == rbgNum)
856  {
857  // all the RBGs are already allocated -> exit
858  if (!ret.m_buildDataList.empty() || !ret.m_buildRarList.empty())
859  {
861  }
862  return;
863  }
864 
865  std::map<uint16_t, double> estAveThr; // store expected average throughput for UE
866  auto itMax = estAveThr.end();
867  std::map<uint16_t, int> rbgPerRntiLog; // record the number of RBG assigned to UE
868  double metricMax = 0.0;
869  for (auto itFlow = m_flowStatsDl.begin(); itFlow != m_flowStatsDl.end(); itFlow++)
870  {
871  auto itRnti = rntiAllocated.find((*itFlow).first);
872  if ((itRnti != rntiAllocated.end()) || (!HarqProcessAvailability((*itFlow).first)))
873  {
874  // UE already allocated for HARQ or without HARQ process available -> drop it
875  if (itRnti != rntiAllocated.end())
876  {
877  NS_LOG_DEBUG(this << " RNTI discarded for HARQ tx" << (uint16_t)(*itFlow).first);
878  }
879  if (!HarqProcessAvailability((*itFlow).first))
880  {
881  NS_LOG_DEBUG(this << " RNTI discarded for HARQ id" << (uint16_t)(*itFlow).first);
882  }
883  continue;
884  }
885 
886  // check first what are channel conditions for this UE, if CQI!=0
887  auto itCqi = m_p10CqiRxed.find((*itFlow).first);
888  auto itTxMode = m_uesTxMode.find((*itFlow).first);
889  if (itTxMode == m_uesTxMode.end())
890  {
891  NS_FATAL_ERROR("No Transmission Mode info on user " << (*itFlow).first);
892  }
893  auto nLayer = TransmissionModesLayers::TxMode2LayerNum((*itTxMode).second);
894 
895  uint8_t cqiSum = 0;
896  for (uint8_t j = 0; j < nLayer; j++)
897  {
898  if (itCqi == m_p10CqiRxed.end())
899  {
900  cqiSum += 1; // no info on this user -> lowest MCS
901  }
902  else
903  {
904  cqiSum = (*itCqi).second;
905  }
906  }
907  if (cqiSum != 0)
908  {
909  estAveThr.insert(std::pair<uint16_t, double>((*itFlow).first,
910  (*itFlow).second.lastAveragedThroughput));
911  }
912  else
913  {
914  NS_LOG_INFO("Skip this flow, CQI==0, rnti:" << (*itFlow).first);
915  }
916  }
917 
918  if (!estAveThr.empty())
919  {
920  // Find UE with largest priority metric
921  for (auto it = estAveThr.begin(); it != estAveThr.end(); it++)
922  {
923  double metric = 1 / (*it).second;
924  if (metric > metricMax)
925  {
926  metricMax = metric;
927  itMax = it;
928  }
929  rbgPerRntiLog.insert(std::pair<uint16_t, int>((*it).first, 1));
930  }
931 
932  // The scheduler tries the best to achieve the equal throughput among all UEs
933  int i = 0;
934  do
935  {
936  NS_LOG_INFO(this << " ALLOCATION for RBG " << i << " of " << rbgNum);
937  if (!rbgMap.at(i))
938  {
939  // allocate one RBG to current UE
940  std::vector<uint16_t> tempMap;
941  auto itMap = allocationMap.find((*itMax).first);
942  if (itMap == allocationMap.end())
943  {
944  tempMap.push_back(i);
945  allocationMap[(*itMax).first] = tempMap;
946  }
947  else
948  {
949  (*itMap).second.push_back(i);
950  }
951 
952  // calculate expected throughput for current UE
953  auto itCqi = m_p10CqiRxed.find((*itMax).first);
954  auto itTxMode = m_uesTxMode.find((*itMax).first);
955  if (itTxMode == m_uesTxMode.end())
956  {
957  NS_FATAL_ERROR("No Transmission Mode info on user " << (*itMax).first);
958  }
959  auto nLayer = TransmissionModesLayers::TxMode2LayerNum((*itTxMode).second);
960  std::vector<uint8_t> mcs;
961  for (uint8_t j = 0; j < nLayer; j++)
962  {
963  if (itCqi == m_p10CqiRxed.end())
964  {
965  mcs.push_back(0); // no info on this user -> lowest MCS
966  }
967  else
968  {
969  mcs.push_back(m_amc->GetMcsFromCqi((*itCqi).second));
970  }
971  }
972 
973  auto itRbgPerRntiLog = rbgPerRntiLog.find((*itMax).first);
974  auto itPastAveThr = m_flowStatsDl.find((*itMax).first);
975  uint32_t bytesTxed = 0;
976  for (uint8_t j = 0; j < nLayer; j++)
977  {
978  int tbSize =
979  (m_amc->GetDlTbSizeFromMcs(mcs.at(0), (*itRbgPerRntiLog).second * rbgSize) /
980  8); // (size of TB in bytes according to table 7.1.7.2.1-1 of 36.213)
981  bytesTxed += tbSize;
982  }
983  double expectedAveThr =
984  ((1.0 - (1.0 / m_timeWindow)) * (*itPastAveThr).second.lastAveragedThroughput) +
985  ((1.0 / m_timeWindow) * (double)(bytesTxed / 0.001));
986 
987  int rbgPerRnti = (*itRbgPerRntiLog).second;
988  rbgPerRnti++;
989  rbgPerRntiLog[(*itMax).first] = rbgPerRnti;
990  estAveThr[(*itMax).first] = expectedAveThr;
991 
992  // find new UE with largest priority metric
993  metricMax = 0.0;
994  for (auto it = estAveThr.begin(); it != estAveThr.end(); it++)
995  {
996  double metric = 1 / (*it).second;
997  if (metric > metricMax)
998  {
999  itMax = it;
1000  metricMax = metric;
1001  }
1002  } // end for estAveThr
1003 
1004  rbgMap.at(i) = true;
1005 
1006  } // end for free RBGs
1007 
1008  i++;
1009 
1010  } while (i < rbgNum); // end for RBGs
1011 
1012  } // end if estAveThr
1013 
1014  // reset TTI stats of users
1015  for (auto itStats = m_flowStatsDl.begin(); itStats != m_flowStatsDl.end(); itStats++)
1016  {
1017  (*itStats).second.lastTtiBytesTransmitted = 0;
1018  }
1019 
1020  // generate the transmission opportunities by grouping the RBGs of the same RNTI and
1021  // creating the correspondent DCIs
1022  auto itMap = allocationMap.begin();
1023  while (itMap != allocationMap.end())
1024  {
1025  // create new BuildDataListElement_s for this LC
1026  BuildDataListElement_s newEl;
1027  newEl.m_rnti = (*itMap).first;
1028  // create the DlDciListElement_s
1029  DlDciListElement_s newDci;
1030  newDci.m_rnti = (*itMap).first;
1031  newDci.m_harqProcess = UpdateHarqProcessId((*itMap).first);
1032 
1033  uint16_t lcActives = LcActivePerFlow((*itMap).first);
1034  NS_LOG_INFO(this << "Allocate user " << newEl.m_rnti << " rbg " << lcActives);
1035  if (lcActives == 0)
1036  {
1037  // Set to max value, to avoid divide by 0 below
1038  lcActives = (uint16_t)65535; // UINT16_MAX;
1039  }
1040  uint16_t RgbPerRnti = (*itMap).second.size();
1041  auto itCqi = m_p10CqiRxed.find((*itMap).first);
1042  auto itTxMode = m_uesTxMode.find((*itMap).first);
1043  if (itTxMode == m_uesTxMode.end())
1044  {
1045  NS_FATAL_ERROR("No Transmission Mode info on user " << (*itMap).first);
1046  }
1047  auto nLayer = TransmissionModesLayers::TxMode2LayerNum((*itTxMode).second);
1048 
1049  uint32_t bytesTxed = 0;
1050  for (uint8_t j = 0; j < nLayer; j++)
1051  {
1052  if (itCqi == m_p10CqiRxed.end())
1053  {
1054  newDci.m_mcs.push_back(0); // no info on this user -> lowest MCS
1055  }
1056  else
1057  {
1058  newDci.m_mcs.push_back(m_amc->GetMcsFromCqi((*itCqi).second));
1059  }
1060 
1061  int tbSize = (m_amc->GetDlTbSizeFromMcs(newDci.m_mcs.at(j), RgbPerRnti * rbgSize) /
1062  8); // (size of TB in bytes according to table 7.1.7.2.1-1 of 36.213)
1063  newDci.m_tbsSize.push_back(tbSize);
1064  bytesTxed += tbSize;
1065  }
1066 
1067  newDci.m_resAlloc = 0; // only allocation type 0 at this stage
1068  newDci.m_rbBitmap = 0; // TBD (32 bit bitmap see 7.1.6 of 36.213)
1069  uint32_t rbgMask = 0;
1070  for (std::size_t k = 0; k < (*itMap).second.size(); k++)
1071  {
1072  rbgMask = rbgMask + (0x1 << (*itMap).second.at(k));
1073  NS_LOG_INFO(this << " Allocated RBG " << (*itMap).second.at(k));
1074  }
1075  newDci.m_rbBitmap = rbgMask; // (32 bit bitmap see 7.1.6 of 36.213)
1076 
1077  // create the rlc PDUs -> equally divide resources among actives LCs
1078  for (auto itBufReq = m_rlcBufferReq.begin(); itBufReq != m_rlcBufferReq.end(); itBufReq++)
1079  {
1080  if (((*itBufReq).first.m_rnti == (*itMap).first) &&
1081  (((*itBufReq).second.m_rlcTransmissionQueueSize > 0) ||
1082  ((*itBufReq).second.m_rlcRetransmissionQueueSize > 0) ||
1083  ((*itBufReq).second.m_rlcStatusPduSize > 0)))
1084  {
1085  std::vector<RlcPduListElement_s> newRlcPduLe;
1086  for (uint8_t j = 0; j < nLayer; j++)
1087  {
1088  RlcPduListElement_s newRlcEl;
1089  newRlcEl.m_logicalChannelIdentity = (*itBufReq).first.m_lcId;
1090  newRlcEl.m_size = newDci.m_tbsSize.at(j) / lcActives;
1091  NS_LOG_INFO(this << " LCID " << (uint32_t)newRlcEl.m_logicalChannelIdentity
1092  << " size " << newRlcEl.m_size << " layer " << (uint16_t)j);
1093  newRlcPduLe.push_back(newRlcEl);
1095  newRlcEl.m_logicalChannelIdentity,
1096  newRlcEl.m_size);
1097  if (m_harqOn)
1098  {
1099  // store RLC PDU list for HARQ
1100  auto itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find((*itMap).first);
1101  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end())
1102  {
1103  NS_FATAL_ERROR("Unable to find RlcPdcList in HARQ buffer for RNTI "
1104  << (*itMap).first);
1105  }
1106  (*itRlcPdu).second.at(j).at(newDci.m_harqProcess).push_back(newRlcEl);
1107  }
1108  }
1109  newEl.m_rlcPduList.push_back(newRlcPduLe);
1110  }
1111  if ((*itBufReq).first.m_rnti > (*itMap).first)
1112  {
1113  break;
1114  }
1115  }
1116  for (uint8_t j = 0; j < nLayer; j++)
1117  {
1118  newDci.m_ndi.push_back(1);
1119  newDci.m_rv.push_back(0);
1120  }
1121 
1122  newDci.m_tpc = 1; // 1 is mapped to 0 in Accumulated Mode and to -1 in Absolute Mode
1123 
1124  newEl.m_dci = newDci;
1125 
1126  if (m_harqOn)
1127  {
1128  // store DCI for HARQ
1129  auto itDci = m_dlHarqProcessesDciBuffer.find(newEl.m_rnti);
1130  if (itDci == m_dlHarqProcessesDciBuffer.end())
1131  {
1132  NS_FATAL_ERROR("Unable to find RNTI entry in DCI HARQ buffer for RNTI "
1133  << newEl.m_rnti);
1134  }
1135  (*itDci).second.at(newDci.m_harqProcess) = newDci;
1136  // refresh timer
1137  auto itHarqTimer = m_dlHarqProcessesTimer.find(newEl.m_rnti);
1138  if (itHarqTimer == m_dlHarqProcessesTimer.end())
1139  {
1140  NS_FATAL_ERROR("Unable to find HARQ timer for RNTI " << (uint16_t)newEl.m_rnti);
1141  }
1142  (*itHarqTimer).second.at(newDci.m_harqProcess) = 0;
1143  }
1144 
1145  // ...more parameters -> ignored in this version
1146 
1147  ret.m_buildDataList.push_back(newEl);
1148  // update UE stats
1149  auto it = m_flowStatsDl.find((*itMap).first);
1150  if (it != m_flowStatsDl.end())
1151  {
1152  (*it).second.lastTtiBytesTransmitted = bytesTxed;
1153  NS_LOG_INFO(this << " UE total bytes txed " << (*it).second.lastTtiBytesTransmitted);
1154  }
1155  else
1156  {
1157  NS_FATAL_ERROR(this << " No Stats for this allocated UE");
1158  }
1159 
1160  itMap++;
1161  } // end while allocation
1162  ret.m_nrOfPdcchOfdmSymbols = 1;
1163 
1164  // update UEs stats
1165  NS_LOG_INFO(this << " Update UEs statistics");
1166  for (auto itStats = m_flowStatsDl.begin(); itStats != m_flowStatsDl.end(); itStats++)
1167  {
1168  (*itStats).second.totalBytesTransmitted += (*itStats).second.lastTtiBytesTransmitted;
1169  // update average throughput (see eq. 12.3 of Sec 12.3.1.2 of LTE – The UMTS Long Term
1170  // Evolution, Ed Wiley)
1171  (*itStats).second.lastAveragedThroughput =
1172  ((1.0 - (1.0 / m_timeWindow)) * (*itStats).second.lastAveragedThroughput) +
1173  ((1.0 / m_timeWindow) * (double)((*itStats).second.lastTtiBytesTransmitted / 0.001));
1174  NS_LOG_INFO(this << " UE total bytes " << (*itStats).second.totalBytesTransmitted);
1175  NS_LOG_INFO(this << " UE average throughput " << (*itStats).second.lastAveragedThroughput);
1176  (*itStats).second.lastTtiBytesTransmitted = 0;
1177  }
1178 
1180 }
1181 
1182 void
1185 {
1186  NS_LOG_FUNCTION(this);
1187 
1188  m_rachList = params.m_rachList;
1189 }
1190 
1191 void
1194 {
1195  NS_LOG_FUNCTION(this);
1196 
1197  for (unsigned int i = 0; i < params.m_cqiList.size(); i++)
1198  {
1199  if (params.m_cqiList.at(i).m_cqiType == CqiListElement_s::P10)
1200  {
1201  NS_LOG_LOGIC("wideband CQI " << (uint32_t)params.m_cqiList.at(i).m_wbCqi.at(0)
1202  << " reported");
1203  uint16_t rnti = params.m_cqiList.at(i).m_rnti;
1204  auto it = m_p10CqiRxed.find(rnti);
1205  if (it == m_p10CqiRxed.end())
1206  {
1207  // create the new entry
1208  m_p10CqiRxed[rnti] =
1209  params.m_cqiList.at(i).m_wbCqi.at(0); // only codeword 0 at this stage (SISO)
1210  // generate correspondent timer
1211  m_p10CqiTimers.insert(std::pair<uint16_t, uint32_t>(rnti, m_cqiTimersThreshold));
1212  }
1213  else
1214  {
1215  // update the CQI value and refresh correspondent timer
1216  (*it).second = params.m_cqiList.at(i).m_wbCqi.at(0);
1217  // update correspondent timer
1218  auto itTimers = m_p10CqiTimers.find(rnti);
1219  (*itTimers).second = m_cqiTimersThreshold;
1220  }
1221  }
1222  else if (params.m_cqiList.at(i).m_cqiType == CqiListElement_s::A30)
1223  {
1224  // subband CQI reporting high layer configured
1225  uint16_t rnti = params.m_cqiList.at(i).m_rnti;
1226  auto it = m_a30CqiRxed.find(rnti);
1227  if (it == m_a30CqiRxed.end())
1228  {
1229  // create the new entry
1230  m_a30CqiRxed[rnti] = params.m_cqiList.at(i).m_sbMeasResult;
1231  m_a30CqiTimers.insert(std::pair<uint16_t, uint32_t>(rnti, m_cqiTimersThreshold));
1232  }
1233  else
1234  {
1235  // update the CQI value and refresh correspondent timer
1236  (*it).second = params.m_cqiList.at(i).m_sbMeasResult;
1237  auto itTimers = m_a30CqiTimers.find(rnti);
1238  (*itTimers).second = m_cqiTimersThreshold;
1239  }
1240  }
1241  else
1242  {
1243  NS_LOG_ERROR(this << " CQI type unknown");
1244  }
1245  }
1246 }
1247 
1248 double
1249 FdBetFfMacScheduler::EstimateUlSinr(uint16_t rnti, uint16_t rb)
1250 {
1251  auto itCqi = m_ueCqi.find(rnti);
1252  if (itCqi == m_ueCqi.end())
1253  {
1254  // no cqi info about this UE
1255  return NO_SINR;
1256  }
1257  else
1258  {
1259  // take the average SINR value among the available
1260  double sinrSum = 0;
1261  unsigned int sinrNum = 0;
1262  for (uint32_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1263  {
1264  double sinr = (*itCqi).second.at(i);
1265  if (sinr != NO_SINR)
1266  {
1267  sinrSum += sinr;
1268  sinrNum++;
1269  }
1270  }
1271  double estimatedSinr = (sinrNum > 0) ? (sinrSum / sinrNum) : DBL_MAX;
1272  // store the value
1273  (*itCqi).second.at(rb) = estimatedSinr;
1274  return estimatedSinr;
1275  }
1276 }
1277 
1278 void
1281 {
1282  NS_LOG_FUNCTION(this << " UL - Frame no. " << (params.m_sfnSf >> 4) << " subframe no. "
1283  << (0xF & params.m_sfnSf) << " size " << params.m_ulInfoList.size());
1284 
1285  RefreshUlCqiMaps();
1286 
1287  // Generate RBs map
1289  std::vector<bool> rbMap;
1290  std::set<uint16_t> rntiAllocated;
1291  std::vector<uint16_t> rbgAllocationMap;
1292  // update with RACH allocation map
1293  rbgAllocationMap = m_rachAllocationMap;
1294  // rbgAllocationMap.resize (m_cschedCellConfig.m_ulBandwidth, 0);
1295  m_rachAllocationMap.clear();
1297 
1298  rbMap.resize(m_cschedCellConfig.m_ulBandwidth, false);
1299  // remove RACH allocation
1300  for (uint16_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1301  {
1302  if (rbgAllocationMap.at(i) != 0)
1303  {
1304  rbMap.at(i) = true;
1305  NS_LOG_DEBUG(this << " Allocated for RACH " << i);
1306  }
1307  }
1308 
1309  if (m_harqOn)
1310  {
1311  // Process UL HARQ feedback
1312  for (std::size_t i = 0; i < params.m_ulInfoList.size(); i++)
1313  {
1314  if (params.m_ulInfoList.at(i).m_receptionStatus == UlInfoListElement_s::NotOk)
1315  {
1316  // retx correspondent block: retrieve the UL-DCI
1317  uint16_t rnti = params.m_ulInfoList.at(i).m_rnti;
1318  auto itProcId = m_ulHarqCurrentProcessId.find(rnti);
1319  if (itProcId == m_ulHarqCurrentProcessId.end())
1320  {
1321  NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1322  }
1323  uint8_t harqId = (uint8_t)((*itProcId).second - HARQ_PERIOD) % HARQ_PROC_NUM;
1324  NS_LOG_INFO(this << " UL-HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId
1325  << " i " << i << " size " << params.m_ulInfoList.size());
1326  auto itHarq = m_ulHarqProcessesDciBuffer.find(rnti);
1327  if (itHarq == m_ulHarqProcessesDciBuffer.end())
1328  {
1329  NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1330  continue;
1331  }
1332  UlDciListElement_s dci = (*itHarq).second.at(harqId);
1333  auto itStat = m_ulHarqProcessesStatus.find(rnti);
1334  if (itStat == m_ulHarqProcessesStatus.end())
1335  {
1336  NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1337  }
1338  if ((*itStat).second.at(harqId) >= 3)
1339  {
1340  NS_LOG_INFO("Max number of retransmissions reached (UL)-> drop process");
1341  continue;
1342  }
1343  bool free = true;
1344  for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1345  {
1346  if (rbMap.at(j))
1347  {
1348  free = false;
1349  NS_LOG_INFO(this << " BUSY " << j);
1350  }
1351  }
1352  if (free)
1353  {
1354  // retx on the same RBs
1355  for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1356  {
1357  rbMap.at(j) = true;
1358  rbgAllocationMap.at(j) = dci.m_rnti;
1359  NS_LOG_INFO("\tRB " << j);
1360  }
1361  NS_LOG_INFO(this << " Send retx in the same RBs " << (uint16_t)dci.m_rbStart
1362  << " to " << dci.m_rbStart + dci.m_rbLen << " RV "
1363  << (*itStat).second.at(harqId) + 1);
1364  }
1365  else
1366  {
1367  NS_LOG_INFO("Cannot allocate retx due to RACH allocations for UE " << rnti);
1368  continue;
1369  }
1370  dci.m_ndi = 0;
1371  // Update HARQ buffers with new HarqId
1372  (*itStat).second.at((*itProcId).second) = (*itStat).second.at(harqId) + 1;
1373  (*itStat).second.at(harqId) = 0;
1374  (*itHarq).second.at((*itProcId).second) = dci;
1375  ret.m_dciList.push_back(dci);
1376  rntiAllocated.insert(dci.m_rnti);
1377  }
1378  else
1379  {
1380  NS_LOG_INFO(this << " HARQ-ACK feedback from RNTI "
1381  << params.m_ulInfoList.at(i).m_rnti);
1382  }
1383  }
1384  }
1385 
1386  std::map<uint16_t, uint32_t>::iterator it;
1387  int nflows = 0;
1388 
1389  for (it = m_ceBsrRxed.begin(); it != m_ceBsrRxed.end(); it++)
1390  {
1391  auto itRnti = rntiAllocated.find((*it).first);
1392  // select UEs with queues not empty and not yet allocated for HARQ
1393  if (((*it).second > 0) && (itRnti == rntiAllocated.end()))
1394  {
1395  nflows++;
1396  }
1397  }
1398 
1399  if (nflows == 0)
1400  {
1401  if (!ret.m_dciList.empty())
1402  {
1403  m_allocationMaps[params.m_sfnSf] = rbgAllocationMap;
1405  }
1406 
1407  return; // no flows to be scheduled
1408  }
1409 
1410  // Divide the remaining resources equally among the active users starting from the subsequent
1411  // one served last scheduling trigger
1412  uint16_t rbPerFlow = (m_cschedCellConfig.m_ulBandwidth) / (nflows + rntiAllocated.size());
1413  if (rbPerFlow < 3)
1414  {
1415  rbPerFlow = 3; // at least 3 rbg per flow (till available resource) to ensure TxOpportunity
1416  // >= 7 bytes
1417  }
1418  int rbAllocated = 0;
1419 
1420  if (m_nextRntiUl != 0)
1421  {
1422  for (it = m_ceBsrRxed.begin(); it != m_ceBsrRxed.end(); it++)
1423  {
1424  if ((*it).first == m_nextRntiUl)
1425  {
1426  break;
1427  }
1428  }
1429  if (it == m_ceBsrRxed.end())
1430  {
1431  NS_LOG_ERROR(this << " no user found");
1432  }
1433  }
1434  else
1435  {
1436  it = m_ceBsrRxed.begin();
1437  m_nextRntiUl = (*it).first;
1438  }
1439  do
1440  {
1441  auto itRnti = rntiAllocated.find((*it).first);
1442  if ((itRnti != rntiAllocated.end()) || ((*it).second == 0))
1443  {
1444  // UE already allocated for UL-HARQ -> skip it
1445  NS_LOG_DEBUG(this << " UE already allocated in HARQ -> discarded, RNTI "
1446  << (*it).first);
1447  it++;
1448  if (it == m_ceBsrRxed.end())
1449  {
1450  // restart from the first
1451  it = m_ceBsrRxed.begin();
1452  }
1453  continue;
1454  }
1455  if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1456  {
1457  // limit to physical resources last resource assignment
1458  rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1459  // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1460  if (rbPerFlow < 3)
1461  {
1462  // terminate allocation
1463  rbPerFlow = 0;
1464  }
1465  }
1466 
1467  UlDciListElement_s uldci;
1468  uldci.m_rnti = (*it).first;
1469  uldci.m_rbLen = rbPerFlow;
1470  bool allocated = false;
1471  NS_LOG_INFO(this << " RB Allocated " << rbAllocated << " rbPerFlow " << rbPerFlow
1472  << " flows " << nflows);
1473  while ((!allocated) && ((rbAllocated + rbPerFlow - m_cschedCellConfig.m_ulBandwidth) < 1) &&
1474  (rbPerFlow != 0))
1475  {
1476  // check availability
1477  bool free = true;
1478  for (int j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1479  {
1480  if (rbMap.at(j))
1481  {
1482  free = false;
1483  break;
1484  }
1485  }
1486  if (free)
1487  {
1488  uldci.m_rbStart = rbAllocated;
1489 
1490  for (int j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1491  {
1492  rbMap.at(j) = true;
1493  // store info on allocation for managing ul-cqi interpretation
1494  rbgAllocationMap.at(j) = (*it).first;
1495  }
1496  rbAllocated += rbPerFlow;
1497  allocated = true;
1498  break;
1499  }
1500  rbAllocated++;
1501  if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1502  {
1503  // limit to physical resources last resource assignment
1504  rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1505  // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1506  if (rbPerFlow < 3)
1507  {
1508  // terminate allocation
1509  rbPerFlow = 0;
1510  }
1511  }
1512  }
1513  if (!allocated)
1514  {
1515  // unable to allocate new resource: finish scheduling
1516  m_nextRntiUl = (*it).first;
1517  if (!ret.m_dciList.empty())
1518  {
1520  }
1521  m_allocationMaps[params.m_sfnSf] = rbgAllocationMap;
1522  return;
1523  }
1524 
1525  auto itCqi = m_ueCqi.find((*it).first);
1526  int cqi = 0;
1527  if (itCqi == m_ueCqi.end())
1528  {
1529  // no cqi info about this UE
1530  uldci.m_mcs = 0; // MCS 0 -> UL-AMC TBD
1531  }
1532  else
1533  {
1534  // take the lowest CQI value (worst RB)
1535  NS_ABORT_MSG_IF((*itCqi).second.empty(),
1536  "CQI of RNTI = " << (*it).first << " has expired");
1537  double minSinr = (*itCqi).second.at(uldci.m_rbStart);
1538  if (minSinr == NO_SINR)
1539  {
1540  minSinr = EstimateUlSinr((*it).first, uldci.m_rbStart);
1541  }
1542  for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1543  {
1544  double sinr = (*itCqi).second.at(i);
1545  if (sinr == NO_SINR)
1546  {
1547  sinr = EstimateUlSinr((*it).first, i);
1548  }
1549  if (sinr < minSinr)
1550  {
1551  minSinr = sinr;
1552  }
1553  }
1554 
1555  // translate SINR -> cqi: WILD ACK: same as DL
1556  double s = log2(1 + (std::pow(10, minSinr / 10) / ((-std::log(5.0 * 0.00005)) / 1.5)));
1557  cqi = m_amc->GetCqiFromSpectralEfficiency(s);
1558  if (cqi == 0)
1559  {
1560  it++;
1561  if (it == m_ceBsrRxed.end())
1562  {
1563  // restart from the first
1564  it = m_ceBsrRxed.begin();
1565  }
1566  NS_LOG_DEBUG(this << " UE discarded for CQI = 0, RNTI " << uldci.m_rnti);
1567  // remove UE from allocation map
1568  for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1569  {
1570  rbgAllocationMap.at(i) = 0;
1571  }
1572  continue; // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
1573  }
1574  uldci.m_mcs = m_amc->GetMcsFromCqi(cqi);
1575  }
1576 
1577  uldci.m_tbSize = (m_amc->GetUlTbSizeFromMcs(uldci.m_mcs, rbPerFlow) / 8);
1578  UpdateUlRlcBufferInfo(uldci.m_rnti, uldci.m_tbSize);
1579  uldci.m_ndi = 1;
1580  uldci.m_cceIndex = 0;
1581  uldci.m_aggrLevel = 1;
1582  uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
1583  uldci.m_hopping = false;
1584  uldci.m_n2Dmrs = 0;
1585  uldci.m_tpc = 0; // no power control
1586  uldci.m_cqiRequest = false; // only period CQI at this stage
1587  uldci.m_ulIndex = 0; // TDD parameter
1588  uldci.m_dai = 1; // TDD parameter
1589  uldci.m_freqHopping = 0;
1590  uldci.m_pdcchPowerOffset = 0; // not used
1591  ret.m_dciList.push_back(uldci);
1592  // store DCI for HARQ_PERIOD
1593  uint8_t harqId = 0;
1594  if (m_harqOn)
1595  {
1596  auto itProcId = m_ulHarqCurrentProcessId.find(uldci.m_rnti);
1597  if (itProcId == m_ulHarqCurrentProcessId.end())
1598  {
1599  NS_FATAL_ERROR("No info find in HARQ buffer for UE " << uldci.m_rnti);
1600  }
1601  harqId = (*itProcId).second;
1602  auto itDci = m_ulHarqProcessesDciBuffer.find(uldci.m_rnti);
1603  if (itDci == m_ulHarqProcessesDciBuffer.end())
1604  {
1605  NS_FATAL_ERROR("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI "
1606  << uldci.m_rnti);
1607  }
1608  (*itDci).second.at(harqId) = uldci;
1609  // Update HARQ process status (RV 0)
1610  auto itStat = m_ulHarqProcessesStatus.find(uldci.m_rnti);
1611  if (itStat == m_ulHarqProcessesStatus.end())
1612  {
1613  NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) "
1614  << uldci.m_rnti);
1615  }
1616  (*itStat).second.at(harqId) = 0;
1617  }
1618 
1619  NS_LOG_INFO(this << " UE Allocation RNTI " << (*it).first << " startPRB "
1620  << (uint32_t)uldci.m_rbStart << " nPRB " << (uint32_t)uldci.m_rbLen
1621  << " CQI " << cqi << " MCS " << (uint32_t)uldci.m_mcs << " TBsize "
1622  << uldci.m_tbSize << " RbAlloc " << rbAllocated << " harqId "
1623  << (uint16_t)harqId);
1624 
1625  // update TTI UE stats
1626  auto itStats = m_flowStatsUl.find((*it).first);
1627  if (itStats != m_flowStatsUl.end())
1628  {
1629  (*itStats).second.lastTtiBytesTransmitted = uldci.m_tbSize;
1630  }
1631  else
1632  {
1633  NS_LOG_DEBUG(this << " No Stats for this allocated UE");
1634  }
1635 
1636  it++;
1637  if (it == m_ceBsrRxed.end())
1638  {
1639  // restart from the first
1640  it = m_ceBsrRxed.begin();
1641  }
1642  if ((rbAllocated == m_cschedCellConfig.m_ulBandwidth) || (rbPerFlow == 0))
1643  {
1644  // Stop allocation: no more PRBs
1645  m_nextRntiUl = (*it).first;
1646  break;
1647  }
1648  } while (((*it).first != m_nextRntiUl) && (rbPerFlow != 0));
1649 
1650  // Update global UE stats
1651  // update UEs stats
1652  for (auto itStats = m_flowStatsUl.begin(); itStats != m_flowStatsUl.end(); itStats++)
1653  {
1654  (*itStats).second.totalBytesTransmitted += (*itStats).second.lastTtiBytesTransmitted;
1655  // update average throughput (see eq. 12.3 of Sec 12.3.1.2 of LTE – The UMTS Long Term
1656  // Evolution, Ed Wiley)
1657  (*itStats).second.lastAveragedThroughput =
1658  ((1.0 - (1.0 / m_timeWindow)) * (*itStats).second.lastAveragedThroughput) +
1659  ((1.0 / m_timeWindow) * (double)((*itStats).second.lastTtiBytesTransmitted / 0.001));
1660  NS_LOG_INFO(this << " UE total bytes " << (*itStats).second.totalBytesTransmitted);
1661  NS_LOG_INFO(this << " UE average throughput " << (*itStats).second.lastAveragedThroughput);
1662  (*itStats).second.lastTtiBytesTransmitted = 0;
1663  }
1664  m_allocationMaps[params.m_sfnSf] = rbgAllocationMap;
1666 }
1667 
1668 void
1671 {
1672  NS_LOG_FUNCTION(this);
1673 }
1674 
1675 void
1678 {
1679  NS_LOG_FUNCTION(this);
1680 }
1681 
1682 void
1685 {
1686  NS_LOG_FUNCTION(this);
1687 
1688  for (unsigned int i = 0; i < params.m_macCeList.size(); i++)
1689  {
1690  if (params.m_macCeList.at(i).m_macCeType == MacCeListElement_s::BSR)
1691  {
1692  // buffer status report
1693  // note that this scheduler does not differentiate the
1694  // allocation according to which LCGs have more/less bytes
1695  // to send.
1696  // Hence the BSR of different LCGs are just summed up to get
1697  // a total queue size that is used for allocation purposes.
1698 
1699  uint32_t buffer = 0;
1700  for (uint8_t lcg = 0; lcg < 4; ++lcg)
1701  {
1702  uint8_t bsrId = params.m_macCeList.at(i).m_macCeValue.m_bufferStatus.at(lcg);
1703  buffer += BufferSizeLevelBsr::BsrId2BufferSize(bsrId);
1704  }
1705 
1706  uint16_t rnti = params.m_macCeList.at(i).m_rnti;
1707  NS_LOG_LOGIC(this << "RNTI=" << rnti << " buffer=" << buffer);
1708  auto it = m_ceBsrRxed.find(rnti);
1709  if (it == m_ceBsrRxed.end())
1710  {
1711  // create the new entry
1712  m_ceBsrRxed.insert(std::pair<uint16_t, uint32_t>(rnti, buffer));
1713  }
1714  else
1715  {
1716  // update the buffer size value
1717  (*it).second = buffer;
1718  }
1719  }
1720  }
1721 }
1722 
1723 void
1726 {
1727  NS_LOG_FUNCTION(this);
1728  // retrieve the allocation for this subframe
1729  switch (m_ulCqiFilter)
1730  {
1732  // filter all the CQIs that are not SRS based
1733  if (params.m_ulCqi.m_type != UlCqi_s::SRS)
1734  {
1735  return;
1736  }
1737  }
1738  break;
1740  // filter all the CQIs that are not SRS based
1741  if (params.m_ulCqi.m_type != UlCqi_s::PUSCH)
1742  {
1743  return;
1744  }
1745  }
1746  break;
1747  default:
1748  NS_FATAL_ERROR("Unknown UL CQI type");
1749  }
1750 
1751  switch (params.m_ulCqi.m_type)
1752  {
1753  case UlCqi_s::PUSCH: {
1754  NS_LOG_DEBUG(this << " Collect PUSCH CQIs of Frame no. " << (params.m_sfnSf >> 4)
1755  << " subframe no. " << (0xF & params.m_sfnSf));
1756  auto itMap = m_allocationMaps.find(params.m_sfnSf);
1757  if (itMap == m_allocationMaps.end())
1758  {
1759  return;
1760  }
1761  for (uint32_t i = 0; i < (*itMap).second.size(); i++)
1762  {
1763  // convert from fixed point notation Sxxxxxxxxxxx.xxx to double
1764  double sinr = LteFfConverter::fpS11dot3toDouble(params.m_ulCqi.m_sinr.at(i));
1765  auto itCqi = m_ueCqi.find((*itMap).second.at(i));
1766  if (itCqi == m_ueCqi.end())
1767  {
1768  // create a new entry
1769  std::vector<double> newCqi;
1770  for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1771  {
1772  if (i == j)
1773  {
1774  newCqi.push_back(sinr);
1775  }
1776  else
1777  {
1778  // initialize with NO_SINR value.
1779  newCqi.push_back(NO_SINR);
1780  }
1781  }
1782  m_ueCqi[(*itMap).second.at(i)] = newCqi;
1783  // generate correspondent timer
1784  m_ueCqiTimers[(*itMap).second.at(i)] = m_cqiTimersThreshold;
1785  }
1786  else
1787  {
1788  // update the value
1789  (*itCqi).second.at(i) = sinr;
1790  NS_LOG_DEBUG(this << " RNTI " << (*itMap).second.at(i) << " RB " << i << " SINR "
1791  << sinr);
1792  // update correspondent timer
1793  auto itTimers = m_ueCqiTimers.find((*itMap).second.at(i));
1794  (*itTimers).second = m_cqiTimersThreshold;
1795  }
1796  }
1797  // remove obsolete info on allocation
1798  m_allocationMaps.erase(itMap);
1799  }
1800  break;
1801  case UlCqi_s::SRS: {
1802  // get the RNTI from vendor specific parameters
1803  uint16_t rnti = 0;
1804  NS_ASSERT(!params.m_vendorSpecificList.empty());
1805  for (std::size_t i = 0; i < params.m_vendorSpecificList.size(); i++)
1806  {
1807  if (params.m_vendorSpecificList.at(i).m_type == SRS_CQI_RNTI_VSP)
1808  {
1809  Ptr<SrsCqiRntiVsp> vsp =
1810  DynamicCast<SrsCqiRntiVsp>(params.m_vendorSpecificList.at(i).m_value);
1811  rnti = vsp->GetRnti();
1812  }
1813  }
1814  auto itCqi = m_ueCqi.find(rnti);
1815  if (itCqi == m_ueCqi.end())
1816  {
1817  // create a new entry
1818  std::vector<double> newCqi;
1819  for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1820  {
1821  double sinr = LteFfConverter::fpS11dot3toDouble(params.m_ulCqi.m_sinr.at(j));
1822  newCqi.push_back(sinr);
1823  NS_LOG_INFO(this << " RNTI " << rnti << " new SRS-CQI for RB " << j << " value "
1824  << sinr);
1825  }
1826  m_ueCqi.insert(std::pair<uint16_t, std::vector<double>>(rnti, newCqi));
1827  // generate correspondent timer
1828  m_ueCqiTimers.insert(std::pair<uint16_t, uint32_t>(rnti, m_cqiTimersThreshold));
1829  }
1830  else
1831  {
1832  // update the values
1833  for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1834  {
1835  double sinr = LteFfConverter::fpS11dot3toDouble(params.m_ulCqi.m_sinr.at(j));
1836  (*itCqi).second.at(j) = sinr;
1837  NS_LOG_INFO(this << " RNTI " << rnti << " update SRS-CQI for RB " << j << " value "
1838  << sinr);
1839  }
1840  // update correspondent timer
1841  auto itTimers = m_ueCqiTimers.find(rnti);
1842  (*itTimers).second = m_cqiTimersThreshold;
1843  }
1844  }
1845  break;
1846  case UlCqi_s::PUCCH_1:
1847  case UlCqi_s::PUCCH_2:
1848  case UlCqi_s::PRACH: {
1849  NS_FATAL_ERROR("FdBetFfMacScheduler supports only PUSCH and SRS UL-CQIs");
1850  }
1851  break;
1852  default:
1853  NS_FATAL_ERROR("Unknown type of UL-CQI");
1854  }
1855 }
1856 
1857 void
1859 {
1860  // refresh DL CQI P01 Map
1861  auto itP10 = m_p10CqiTimers.begin();
1862  while (itP10 != m_p10CqiTimers.end())
1863  {
1864  NS_LOG_INFO(this << " P10-CQI for user " << (*itP10).first << " is "
1865  << (uint32_t)(*itP10).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1866  if ((*itP10).second == 0)
1867  {
1868  // delete correspondent entries
1869  auto itMap = m_p10CqiRxed.find((*itP10).first);
1870  NS_ASSERT_MSG(itMap != m_p10CqiRxed.end(),
1871  " Does not find CQI report for user " << (*itP10).first);
1872  NS_LOG_INFO(this << " P10-CQI expired for user " << (*itP10).first);
1873  m_p10CqiRxed.erase(itMap);
1874  auto temp = itP10;
1875  itP10++;
1876  m_p10CqiTimers.erase(temp);
1877  }
1878  else
1879  {
1880  (*itP10).second--;
1881  itP10++;
1882  }
1883  }
1884 
1885  // refresh DL CQI A30 Map
1886  auto itA30 = m_a30CqiTimers.begin();
1887  while (itA30 != m_a30CqiTimers.end())
1888  {
1889  NS_LOG_INFO(this << " A30-CQI for user " << (*itA30).first << " is "
1890  << (uint32_t)(*itA30).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1891  if ((*itA30).second == 0)
1892  {
1893  // delete correspondent entries
1894  auto itMap = m_a30CqiRxed.find((*itA30).first);
1895  NS_ASSERT_MSG(itMap != m_a30CqiRxed.end(),
1896  " Does not find CQI report for user " << (*itA30).first);
1897  NS_LOG_INFO(this << " A30-CQI expired for user " << (*itA30).first);
1898  m_a30CqiRxed.erase(itMap);
1899  auto temp = itA30;
1900  itA30++;
1901  m_a30CqiTimers.erase(temp);
1902  }
1903  else
1904  {
1905  (*itA30).second--;
1906  itA30++;
1907  }
1908  }
1909 }
1910 
1911 void
1913 {
1914  // refresh UL CQI Map
1915  auto itUl = m_ueCqiTimers.begin();
1916  while (itUl != m_ueCqiTimers.end())
1917  {
1918  NS_LOG_INFO(this << " UL-CQI for user " << (*itUl).first << " is "
1919  << (uint32_t)(*itUl).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1920  if ((*itUl).second == 0)
1921  {
1922  // delete correspondent entries
1923  auto itMap = m_ueCqi.find((*itUl).first);
1924  NS_ASSERT_MSG(itMap != m_ueCqi.end(),
1925  " Does not find CQI report for user " << (*itUl).first);
1926  NS_LOG_INFO(this << " UL-CQI exired for user " << (*itUl).first);
1927  (*itMap).second.clear();
1928  m_ueCqi.erase(itMap);
1929  auto temp = itUl;
1930  itUl++;
1931  m_ueCqiTimers.erase(temp);
1932  }
1933  else
1934  {
1935  (*itUl).second--;
1936  itUl++;
1937  }
1938  }
1939 }
1940 
1941 void
1942 FdBetFfMacScheduler::UpdateDlRlcBufferInfo(uint16_t rnti, uint8_t lcid, uint16_t size)
1943 {
1944  LteFlowId_t flow(rnti, lcid);
1945  auto it = m_rlcBufferReq.find(flow);
1946  if (it != m_rlcBufferReq.end())
1947  {
1948  NS_LOG_INFO(this << " UE " << rnti << " LC " << (uint16_t)lcid << " txqueue "
1949  << (*it).second.m_rlcTransmissionQueueSize << " retxqueue "
1950  << (*it).second.m_rlcRetransmissionQueueSize << " status "
1951  << (*it).second.m_rlcStatusPduSize << " decrease " << size);
1952  // Update queues: RLC tx order Status, ReTx, Tx
1953  // Update status queue
1954  if (((*it).second.m_rlcStatusPduSize > 0) && (size >= (*it).second.m_rlcStatusPduSize))
1955  {
1956  (*it).second.m_rlcStatusPduSize = 0;
1957  }
1958  else if (((*it).second.m_rlcRetransmissionQueueSize > 0) &&
1959  (size >= (*it).second.m_rlcRetransmissionQueueSize))
1960  {
1961  (*it).second.m_rlcRetransmissionQueueSize = 0;
1962  }
1963  else if ((*it).second.m_rlcTransmissionQueueSize > 0)
1964  {
1965  uint32_t rlcOverhead;
1966  if (lcid == 1)
1967  {
1968  // for SRB1 (using RLC AM) it's better to
1969  // overestimate RLC overhead rather than
1970  // underestimate it and risk unneeded
1971  // segmentation which increases delay
1972  rlcOverhead = 4;
1973  }
1974  else
1975  {
1976  // minimum RLC overhead due to header
1977  rlcOverhead = 2;
1978  }
1979  // update transmission queue
1980  if ((*it).second.m_rlcTransmissionQueueSize <= size - rlcOverhead)
1981  {
1982  (*it).second.m_rlcTransmissionQueueSize = 0;
1983  }
1984  else
1985  {
1986  (*it).second.m_rlcTransmissionQueueSize -= size - rlcOverhead;
1987  }
1988  }
1989  }
1990  else
1991  {
1992  NS_LOG_ERROR(this << " Does not find DL RLC Buffer Report of UE " << rnti);
1993  }
1994 }
1995 
1996 void
1997 FdBetFfMacScheduler::UpdateUlRlcBufferInfo(uint16_t rnti, uint16_t size)
1998 {
1999  size = size - 2; // remove the minimum RLC overhead
2000  auto it = m_ceBsrRxed.find(rnti);
2001  if (it != m_ceBsrRxed.end())
2002  {
2003  NS_LOG_INFO(this << " UE " << rnti << " size " << size << " BSR " << (*it).second);
2004  if ((*it).second >= size)
2005  {
2006  (*it).second -= size;
2007  }
2008  else
2009  {
2010  (*it).second = 0;
2011  }
2012  }
2013  else
2014  {
2015  NS_LOG_ERROR(this << " Does not find BSR report info of UE " << rnti);
2016  }
2017 }
2018 
2019 void
2021 {
2022  NS_LOG_FUNCTION(this << " RNTI " << rnti << " txMode " << (uint16_t)txMode);
2024  params.m_rnti = rnti;
2025  params.m_transmissionMode = txMode;
2027 }
2028 
2029 } // namespace ns3
static uint32_t BsrId2BufferSize(uint8_t val)
Convert BSR ID to buffer size.
Definition: lte-common.cc:176
Implements the SCHED SAP and CSCHED SAP for a Frequency Domain Blind Equal Throughput scheduler.
std::map< uint16_t, uint8_t > m_uesTxMode
txMode of the UEs
std::vector< RachListElement_s > m_rachList
rach list
void UpdateUlRlcBufferInfo(uint16_t rnti, uint16_t size)
Update UL RLC buffer info.
void DoSchedDlTriggerReq(const FfMacSchedSapProvider::SchedDlTriggerReqParameters &params)
Sched DL trigger request function.
void DoSchedUlSrInfoReq(const FfMacSchedSapProvider::SchedUlSrInfoReqParameters &params)
Sched UL SR info request function.
std::map< uint16_t, uint8_t > m_ulHarqCurrentProcessId
UL HARQ current process ID.
unsigned int LcActivePerFlow(uint16_t rnti)
LC active per flow function.
void DoCschedCellConfigReq(const FfMacCschedSapProvider::CschedCellConfigReqParameters &params)
CSched cell config request function.
void DoDispose() override
Destructor implementation.
void DoCschedLcConfigReq(const FfMacCschedSapProvider::CschedLcConfigReqParameters &params)
Csched LC config request function.
~FdBetFfMacScheduler() override
Destructor.
void DoSchedDlMacBufferReq(const FfMacSchedSapProvider::SchedDlMacBufferReqParameters &params)
Sched DL MAC buffer request function.
FfMacSchedSapProvider * m_schedSapProvider
sched sap provider
std::map< uint16_t, uint8_t > m_p10CqiRxed
Map of UE's DL CQI P01 received.
LteFfrSapUser * m_ffrSapUser
ffr sap user
std::map< uint16_t, fdbetsFlowPerf_t > m_flowStatsDl
Map of UE statistics (per RNTI basis) in downlink.
bool m_harqOn
m_harqOn when false inhibit the HARQ mechanisms (by default active)
void DoSchedUlMacCtrlInfoReq(const FfMacSchedSapProvider::SchedUlMacCtrlInfoReqParameters &params)
Sched UL MAC control info request function.
std::map< uint16_t, uint32_t > m_a30CqiTimers
Map of UE's timers on DL CQI A30 received.
std::map< uint16_t, std::vector< double > > m_ueCqi
Map of UEs' UL-CQI per RBG.
FfMacCschedSapProvider::CschedCellConfigReqParameters m_cschedCellConfig
csched cell config
void SetLteFfrSapProvider(LteFfrSapProvider *s) override
Set the Provider part of the LteFfrSap that this Scheduler will interact with.
LteFfrSapUser * GetLteFfrSapUser() override
void RefreshUlCqiMaps()
Refresh UL CQI maps.
void DoSchedUlTriggerReq(const FfMacSchedSapProvider::SchedUlTriggerReqParameters &params)
Sched UL trigger request function.
void DoSchedUlCqiInfoReq(const FfMacSchedSapProvider::SchedUlCqiInfoReqParameters &params)
Sched UL CGI info request function.
std::map< LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters > m_rlcBufferReq
Vectors of UE's LC info.
std::map< uint16_t, DlHarqProcessesTimer_t > m_dlHarqProcessesTimer
DL HARQ process timer.
friend class MemberSchedSapProvider< FdBetFfMacScheduler >
allow MemberSchedSapProvider<FdBetFfMacScheduler> class friend access
std::map< uint16_t, UlHarqProcessesStatus_t > m_ulHarqProcessesStatus
UL HARQ process status.
std::map< uint16_t, uint8_t > m_dlHarqCurrentProcessId
DL HARQ current process ID.
FfMacCschedSapProvider * GetFfMacCschedSapProvider() override
void TransmissionModeConfigurationUpdate(uint16_t rnti, uint8_t txMode)
Transmission mode configuration update function.
void DoSchedDlCqiInfoReq(const FfMacSchedSapProvider::SchedDlCqiInfoReqParameters &params)
Sched DL CGI info request function.
std::map< uint16_t, DlHarqProcessesStatus_t > m_dlHarqProcessesStatus
DL HARQ process status.
std::map< uint16_t, uint32_t > m_p10CqiTimers
Map of UE's timers on DL CQI P01 received.
std::map< uint16_t, UlHarqProcessesDciBuffer_t > m_ulHarqProcessesDciBuffer
UL HARQ process DCI Buffer.
std::map< uint16_t, uint32_t > m_ceBsrRxed
Map of UE's buffer status reports received.
void DoCschedUeConfigReq(const FfMacCschedSapProvider::CschedUeConfigReqParameters &params)
Csched UE config request function.
bool HarqProcessAvailability(uint16_t rnti)
Return the availability of free process for the RNTI specified.
uint8_t UpdateHarqProcessId(uint16_t rnti)
Update and return a new process Id for the RNTI specified.
void SetFfMacSchedSapUser(FfMacSchedSapUser *s) override
set the user part of the FfMacSchedSap that this Scheduler will interact with.
FfMacCschedSapUser * m_cschedSapUser
csched sap user
void DoSchedDlRachInfoReq(const FfMacSchedSapProvider::SchedDlRachInfoReqParameters &params)
Sched DL RACH info request function.
std::map< uint16_t, fdbetsFlowPerf_t > m_flowStatsUl
Map of UE statistics (per RNTI basis)
LteFfrSapProvider * m_ffrSapProvider
ffr sap provider
double EstimateUlSinr(uint16_t rnti, uint16_t rb)
Estimate UL SNR.
FfMacSchedSapProvider * GetFfMacSchedSapProvider() override
std::vector< uint16_t > m_rachAllocationMap
rach allocation map
void RefreshHarqProcesses()
Refresh HARQ processes according to the timers.
void DoSchedDlPagingBufferReq(const FfMacSchedSapProvider::SchedDlPagingBufferReqParameters &params)
Sched DL paging buffer request function.
std::map< uint16_t, std::vector< uint16_t > > m_allocationMaps
Map of previous allocated UE per RBG (used to retrieve info from UL-CQI)
std::map< uint16_t, DlHarqRlcPduListBuffer_t > m_dlHarqProcessesRlcPduListBuffer
DL HARQ process RLC PDU List.
void DoCschedLcReleaseReq(const FfMacCschedSapProvider::CschedLcReleaseReqParameters &params)
CSched LC release request function.
void DoSchedUlNoiseInterferenceReq(const FfMacSchedSapProvider::SchedUlNoiseInterferenceReqParameters &params)
Sched UL noise interference request function.
void RefreshDlCqiMaps()
Refresh DL CQI maps.
FfMacCschedSapProvider * m_cschedSapProvider
csched sap provider
void SetFfMacCschedSapUser(FfMacCschedSapUser *s) override
set the user part of the FfMacCschedSap that this Scheduler will interact with.
static TypeId GetTypeId()
Get the type ID.
std::map< uint16_t, SbMeasResult_s > m_a30CqiRxed
Map of UE's DL CQI A30 received.
void UpdateDlRlcBufferInfo(uint16_t rnti, uint8_t lcid, uint16_t size)
Update DL RLC buffer info.
uint16_t m_nextRntiUl
RNTI of the next user to be served next scheduling in UL.
uint8_t m_ulGrantMcs
MCS for UL grant (default 0)
std::map< uint16_t, uint32_t > m_ueCqiTimers
Map of UEs' timers on UL-CQI per RBG.
std::vector< DlInfoListElement_s > m_dlInfoListBuffered
DL HARQ retx buffered.
int GetRbgSize(int dlbandwidth)
Get RBG size function.
FfMacSchedSapUser * m_schedSapUser
sched sap user
void DoCschedUeReleaseReq(const FfMacCschedSapProvider::CschedUeReleaseReqParameters &params)
CSched UE release request function.
std::map< uint16_t, DlHarqProcessesDciBuffer_t > m_dlHarqProcessesDciBuffer
DL HARQ process DCI buffer.
friend class MemberCschedSapProvider< FdBetFfMacScheduler >
allow MemberCschedSapProvider<FdBetFfMacScheduler> class friend access
void DoSchedDlRlcBufferReq(const FfMacSchedSapProvider::SchedDlRlcBufferReqParameters &params)
Sched DL RLC buffer request function.
Provides the CSCHED SAP.
FfMacCschedSapUser class.
virtual void CschedUeConfigCnf(const CschedUeConfigCnfParameters &params)=0
CSCHED_UE_CONFIG_CNF.
virtual void CschedUeConfigUpdateInd(const CschedUeConfigUpdateIndParameters &params)=0
CSCHED_UE_UPDATE_IND.
Provides the SCHED SAP.
FfMacSchedSapUser class.
virtual void SchedUlConfigInd(const SchedUlConfigIndParameters &params)=0
SCHED_UL_CONFIG_IND.
virtual void SchedDlConfigInd(const SchedDlConfigIndParameters &params)=0
SCHED_DL_CONFIG_IND.
This abstract base class identifies the interface by means of which the helper object can plug on the...
UlCqiFilter_t m_ulCqiFilter
UL CQI filter.
static double fpS11dot3toDouble(uint16_t val)
Convert from fixed point S11.3 notation to double.
Definition: lte-common.cc:151
Service Access Point (SAP) offered by the Frequency Reuse algorithm instance to the MAC Scheduler ins...
Definition: lte-ffr-sap.h:40
Service Access Point (SAP) offered by the eNodeB RRC instance to the Frequency Reuse algorithm instan...
Definition: lte-ffr-sap.h:140
Smart pointer class similar to boost::intrusive_ptr.
Definition: ptr.h:77
static Time Now()
Return the current simulation virtual time.
Definition: simulator.cc:208
static uint8_t TxMode2LayerNum(uint8_t txMode)
Transmit mode 2 layer number.
Definition: lte-common.cc:203
a unique identifier for an interface.
Definition: type-id.h:59
TypeId SetParent(TypeId tid)
Set the parent TypeId.
Definition: type-id.cc:931
Hold an unsigned integer type.
Definition: uinteger.h:45
#define NS_ASSERT(condition)
At runtime, in debugging builds, if this condition is not true, the program prints the source file,...
Definition: assert.h:66
#define NS_ASSERT_MSG(condition, message)
At runtime, in debugging builds, if this condition is not true, the program prints the message to out...
Definition: assert.h:86
#define NS_FATAL_ERROR(msg)
Report a fatal error with a message and terminate.
Definition: fatal-error.h:179
#define NS_ABORT_MSG_IF(cond, msg)
Abnormal program termination if a condition is true, with a message.
Definition: abort.h:108
#define NS_LOG_ERROR(msg)
Use NS_LOG to output a message of level LOG_ERROR.
Definition: log.h:254
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition: log.h:202
#define NS_LOG_DEBUG(msg)
Use NS_LOG to output a message of level LOG_DEBUG.
Definition: log.h:268
#define NS_LOG_LOGIC(msg)
Use NS_LOG to output a message of level LOG_LOGIC.
Definition: log.h:282
#define NS_LOG_FUNCTION(parameters)
If log level LOG_FUNCTION is enabled, this macro will output all input parameters separated by ",...
#define NS_LOG_INFO(msg)
Use NS_LOG to output a message of level LOG_INFO.
Definition: log.h:275
#define NS_OBJECT_ENSURE_REGISTERED(type)
Register an Object subclass with the TypeId system.
Definition: object-base.h:46
#define HARQ_PERIOD
Definition: lte-common.h:30
#define SRS_CQI_RNTI_VSP
Every class exported by the ns3 library is enclosed in the ns3 namespace.
Ptr< const AttributeChecker > MakeBooleanChecker()
Definition: boolean.cc:124
constexpr double NO_SINR
Value for SINR outside the range defined by FF-API, used to indicate that there is no CQI for this el...
std::vector< UlDciListElement_s > UlHarqProcessesDciBuffer_t
UL HARQ process DCI buffer vector.
std::vector< RlcPduList_t > DlHarqRlcPduListBuffer_t
Vector of the 8 HARQ processes per UE.
@ SUCCESS
Definition: ff-mac-common.h:62
constexpr uint32_t HARQ_DL_TIMEOUT
HARQ DL timeout.
constexpr uint32_t HARQ_PROC_NUM
Number of HARQ processes.
Ptr< const AttributeAccessor > MakeBooleanAccessor(T1 a1)
Definition: boolean.h:86
Ptr< const AttributeAccessor > MakeUintegerAccessor(T1 a1)
Definition: uinteger.h:46
std::vector< DlDciListElement_s > DlHarqProcessesDciBuffer_t
DL HARQ process DCI buffer vector.
std::vector< uint8_t > UlHarqProcessesStatus_t
UL HARQ process status vector.
std::vector< uint8_t > DlHarqProcessesTimer_t
DL HARQ process timer vector.
std::vector< uint8_t > DlHarqProcessesStatus_t
DL HARQ process status vector.
static const int FdBetType0AllocationRbg[4]
FdBetType0AllocationRbg array.
params
Fit Fluctuating Two Ray model to the 3GPP TR 38.901 using the Anderson-Darling goodness-of-fit ##.
See section 4.3.8 buildDataListElement.
std::vector< std::vector< struct RlcPduListElement_s > > m_rlcPduList
RLC PDU list.
struct DlDciListElement_s m_dci
DCI.
See section 4.3.10 buildRARListElement.
See section 4.3.1 dlDciListElement.
Definition: ff-mac-common.h:93
std::vector< uint8_t > m_ndi
New data indicator.
uint8_t m_harqProcess
HARQ process.
uint32_t m_rbBitmap
RB bitmap.
Definition: ff-mac-common.h:95
std::vector< uint8_t > m_mcs
MCS.
Definition: ff-mac-common.h:99
uint8_t m_resAlloc
The type of resource allocation.
Definition: ff-mac-common.h:97
std::vector< uint16_t > m_tbsSize
The TBs size.
Definition: ff-mac-common.h:98
std::vector< uint8_t > m_rv
Redundancy version.
uint8_t m_tpc
Tx power control command.
Parameters of the CSCHED_LC_CONFIG_REQ primitive.
Parameters of the CSCHED_LC_RELEASE_REQ primitive.
Parameters of the CSCHED_UE_CONFIG_REQ primitive.
Parameters of the CSCHED_UE_RELEASE_REQ primitive.
Parameters of the CSCHED_UE_CONFIG_CNF primitive.
Parameters of the CSCHED_UE_CONFIG_UPDATE_IND primitive.
Parameters of the SCHED_DL_CQI_INFO_REQ primitive.
Parameters of the SCHED_DL_MAC_BUFFER_REQ primitive.
Parameters of the SCHED_DL_PAGING_BUFFER_REQ primitive.
Parameters of the SCHED_DL_RACH_INFO_REQ primitive.
Parameters of the SCHED_DL_TRIGGER_REQ primitive.
Parameters of the SCHED_UL_CQI_INFO_REQ primitive.
Parameters of the SCHED_UL_MAC_CTRL_INFO_REQ primitive.
Parameters of the SCHED_UL_NOISE_INTERFERENCE_REQ primitive.
Parameters of the SCHED_UL_SR_INFO_REQ primitive.
Parameters of the SCHED_UL_TRIGGER_REQ primitive.
std::vector< BuildDataListElement_s > m_buildDataList
build data list
std::vector< BuildRarListElement_s > m_buildRarList
build rar list
uint8_t m_nrOfPdcchOfdmSymbols
number of PDCCH OFDM symbols
Parameters of the SCHED_UL_CONFIG_IND primitive.
std::vector< UlDciListElement_s > m_dciList
DCI list.
LteFlowId structure.
Definition: lte-common.h:43
See section 4.3.9 rlcPDU_ListElement.
uint8_t m_logicalChannelIdentity
logical channel identity
See section 4.3.2 ulDciListElement.
int8_t m_pdcchPowerOffset
CCH power offset.
int8_t m_tpc
Tx power control command.
uint8_t m_dai
DL assignment index.
uint8_t m_cceIndex
Control Channel Element index.
uint8_t m_ulIndex
UL index.
uint8_t m_ueTxAntennaSelection
UE antenna selection.
bool m_cqiRequest
CQI request.
uint8_t m_n2Dmrs
n2 DMRS
uint8_t m_freqHopping
freq hopping
uint8_t m_aggrLevel
The aggregation level.
bool m_ulDelay
UL delay?
int8_t m_tpc
Tx power control command.
bool m_cqiRequest
CQI request?
bool m_hopping
hopping?
uint16_t m_tbSize
size
uint8_t m_rbLen
length
uint8_t m_mcs
MCS.
uint8_t m_rbStart
start
uint16_t m_rnti
RNTI.
fdbetsFlowPerf_t structure
unsigned int lastTtiBytesTransmitted
last total bytes transmitted
double lastAveragedThroughput
last averaged throughput
unsigned long totalBytesTransmitted
total bytes transmitted
Time flowStart
flow start time