A Discrete-Event Network Simulator
API
epc-tft.cc
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2011 CTTC
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation;
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
16  *
17  * Author: Nicola Baldo <nbaldo@cttc.es>
18  */
19 
20 #include "epc-tft.h"
21 
22 #include "ns3/abort.h"
23 #include "ns3/log.h"
24 
25 namespace ns3
26 {
27 
28 NS_LOG_COMPONENT_DEFINE("EpcTft");
29 
37 std::ostream&
38 operator<<(std::ostream& os, const EpcTft::Direction& d)
39 {
40  switch (d)
41  {
42  case EpcTft::DOWNLINK:
43  os << "DOWNLINK";
44  break;
45  case EpcTft::UPLINK:
46  os << "UPLINK";
47  break;
48  default:
49  os << "BIDIRECTIONAL";
50  break;
51  }
52  return os;
53 }
54 
62 std::ostream&
63 operator<<(std::ostream& os, const EpcTft::PacketFilter& f)
64 {
65  os << " direction: " << f.direction << " remoteAddress: " << f.remoteAddress
66  << " remoteMask: " << f.remoteMask << " remoteIpv6Address: " << f.remoteIpv6Address
67  << " remoteIpv6Prefix: " << f.remoteIpv6Prefix << " localAddress: " << f.localAddress
68  << " localMask: " << f.localMask << " localIpv6Address: " << f.localIpv6Address
69  << " localIpv6Prefix: " << f.localIpv6Prefix << " remotePortStart: " << f.remotePortStart
70  << " remotePortEnd: " << f.remotePortEnd << " localPortStart: " << f.localPortStart
71  << " localPortEnd: " << f.localPortEnd << " typeOfService: 0x" << std::hex
72  << (uint16_t)f.typeOfService << std::dec << " typeOfServiceMask: 0x" << std::hex
73  << (uint16_t)f.typeOfServiceMask << std::dec;
74  return os;
75 }
76 
78  : precedence(255),
79  direction(BIDIRECTIONAL),
80  remoteMask("0.0.0.0"),
81  localMask("0.0.0.0"),
82  remotePortStart(0),
83  remotePortEnd(65535),
84  localPortStart(0),
85  localPortEnd(65535),
86  typeOfService(0),
87  typeOfServiceMask(0)
88 {
89  NS_LOG_FUNCTION(this);
90 }
91 
92 bool
94  Ipv4Address ra,
95  Ipv4Address la,
96  uint16_t rp,
97  uint16_t lp,
98  uint8_t tos)
99 {
100  NS_LOG_FUNCTION(this << d << ra << la << rp << lp << (uint16_t)tos);
101  if (d & direction)
102  {
103  NS_LOG_LOGIC("d matches");
104  if (remoteMask.IsMatch(remoteAddress, ra))
105  {
106  NS_LOG_LOGIC("ra matches");
107  if (localMask.IsMatch(localAddress, la))
108  {
109  NS_LOG_LOGIC("la matches");
110  if (remotePortStart <= rp && rp <= remotePortEnd)
111  {
112  NS_LOG_LOGIC("rp matches");
113  if (localPortStart <= lp && lp <= localPortEnd)
114  {
115  NS_LOG_LOGIC("lp matches");
116  if ((tos & typeOfServiceMask) == (typeOfService & typeOfServiceMask))
117  {
118  NS_LOG_LOGIC("tos matches --> have match!");
119  return true;
120  }
121  else
122  {
123  NS_LOG_LOGIC("tos doesn't match: tos="
124  << tos << " f.tos=" << typeOfService
125  << " f.tosmask=" << typeOfServiceMask);
126  }
127  }
128  else
129  {
130  NS_LOG_LOGIC("lp doesn't match: lp=" << lp << " f.lps=" << localPortStart
131  << " f.lpe=" << localPortEnd);
132  }
133  }
134  else
135  {
136  NS_LOG_LOGIC("rp doesn't match: rp=" << rp << " f.rps=" << remotePortStart
137  << " f.lpe=" << remotePortEnd);
138  }
139  }
140  else
141  {
142  NS_LOG_LOGIC("la doesn't match: la=" << la << " f.la=" << localAddress
143  << " f.lmask=" << localMask);
144  }
145  }
146  else
147  {
148  NS_LOG_LOGIC("ra doesn't match: ra=" << ra << " f.ra=" << remoteAddress
149  << " f.rmask=" << remoteMask);
150  }
151  }
152  else
153  {
154  NS_LOG_LOGIC("d doesn't match: d=0x" << std::hex << d << " f.d=0x" << std::hex << direction
155  << std::dec);
156  }
157  return false;
158 }
159 
160 bool
162  Ipv6Address ra,
163  Ipv6Address la,
164  uint16_t rp,
165  uint16_t lp,
166  uint8_t tos)
167 {
168  NS_LOG_FUNCTION(this << d << ra << la << rp << lp << (uint16_t)tos);
169  if (d & direction)
170  {
171  NS_LOG_LOGIC("d matches");
172  if (remoteIpv6Prefix.IsMatch(remoteIpv6Address, ra))
173  {
174  NS_LOG_LOGIC("ra matches");
175  if (localIpv6Prefix.IsMatch(localIpv6Address, la))
176  {
177  NS_LOG_LOGIC("la matches");
178  if (remotePortStart <= rp && rp <= remotePortEnd)
179  {
180  NS_LOG_LOGIC("rp matches");
181  if (localPortStart <= lp && lp <= localPortEnd)
182  {
183  NS_LOG_LOGIC("lp matches");
184  if ((tos & typeOfServiceMask) == (typeOfService & typeOfServiceMask))
185  {
186  NS_LOG_LOGIC("tos matches --> have match!");
187  return true;
188  }
189  else
190  {
191  NS_LOG_LOGIC("tos doesn't match: tos="
192  << tos << " f.tos=" << typeOfService
193  << " f.tosmask=" << typeOfServiceMask);
194  }
195  }
196  else
197  {
198  NS_LOG_LOGIC("lp doesn't match: lp=" << lp << " f.lps=" << localPortStart
199  << " f.lpe=" << localPortEnd);
200  }
201  }
202  else
203  {
204  NS_LOG_LOGIC("rp doesn't match: rp=" << rp << " f.rps=" << remotePortStart
205  << " f.lpe=" << remotePortEnd);
206  }
207  }
208  else
209  {
210  NS_LOG_LOGIC("la doesn't match: la=" << la << " f.la=" << localIpv6Address
211  << " f.lprefix=" << localIpv6Prefix);
212  }
213  }
214  else
215  {
216  NS_LOG_LOGIC("ra doesn't match: ra=" << ra << " f.ra=" << remoteIpv6Address
217  << " f.rprefix=" << remoteIpv6Prefix);
218  }
219  }
220  else
221  {
222  NS_LOG_LOGIC("d doesn't match: d=0x" << std::hex << d << " f.d=0x" << std::hex << direction
223  << std::dec);
224  }
225  return false;
226 }
227 
230 {
231  Ptr<EpcTft> tft = Create<EpcTft>();
232  EpcTft::PacketFilter defaultPacketFilter;
233  tft->Add(defaultPacketFilter);
234  return tft;
235 }
236 
238  : m_numFilters(0)
239 {
240  NS_LOG_FUNCTION(this);
241 }
242 
243 uint8_t
245 {
246  NS_LOG_FUNCTION(this << f);
247  NS_ABORT_IF(m_numFilters >= 16);
248 
249  std::list<PacketFilter>::iterator it;
250  for (it = m_filters.begin(); (it != m_filters.end()) && (it->precedence <= f.precedence); ++it)
251  {
252  }
253  m_filters.insert(it, f);
254  ++m_numFilters;
255  return (m_numFilters - 1);
256 }
257 
258 bool
261  Ipv4Address localAddress,
262  uint16_t remotePort,
263  uint16_t localPort,
264  uint8_t typeOfService)
265 {
266  NS_LOG_FUNCTION(this << direction << remoteAddress << localAddress << std::dec << remotePort
267  << localPort << (uint16_t)typeOfService);
268  for (auto it = m_filters.begin(); it != m_filters.end(); ++it)
269  {
270  if (it->Matches(direction,
272  localAddress,
273  remotePort,
274  localPort,
275  typeOfService))
276  {
277  return true;
278  }
279  }
280  return false;
281 }
282 
283 bool
286  Ipv6Address localAddress,
287  uint16_t remotePort,
288  uint16_t localPort,
289  uint8_t typeOfService)
290 {
291  NS_LOG_FUNCTION(this << direction << remoteAddress << localAddress << std::dec << remotePort
292  << localPort << (uint16_t)typeOfService);
293  for (auto it = m_filters.begin(); it != m_filters.end(); ++it)
294  {
295  if (it->Matches(direction,
297  localAddress,
298  remotePort,
299  localPort,
300  typeOfService))
301  {
302  return true;
303  }
304  }
305  return false;
306 }
307 
308 std::list<EpcTft::PacketFilter>
310 {
311  NS_LOG_FUNCTION(this);
312  return m_filters;
313 }
314 
315 } // namespace ns3
double f(double x, void *params)
Definition: 80211b.c:70
uint8_t Add(PacketFilter f)
add a PacketFilter to the Traffic Flow Template
Definition: epc-tft.cc:244
bool Matches(Direction direction, Ipv4Address remoteAddress, Ipv4Address localAddress, uint16_t remotePort, uint16_t localPort, uint8_t typeOfService)
Definition: epc-tft.cc:259
static Ptr< EpcTft > Default()
creates a TFT matching any traffic
Definition: epc-tft.cc:229
std::list< PacketFilter > GetPacketFilters() const
Get the packet filters.
Definition: epc-tft.cc:309
Direction
Indicates the direction of the traffic that is to be classified.
Definition: epc-tft.h:51
@ DOWNLINK
Definition: epc-tft.h:52
std::list< PacketFilter > m_filters
packet filter list
Definition: epc-tft.h:195
uint8_t m_numFilters
number of packet filters applied to this TFT
Definition: epc-tft.h:196
Ipv4 addresses are stored in host order in this class.
Definition: ipv4-address.h:42
Describes an IPv6 address.
Definition: ipv6-address.h:49
Smart pointer class similar to boost::intrusive_ptr.
Definition: ptr.h:77
#define NS_ABORT_IF(cond)
Abnormal program termination if a condition is true.
Definition: abort.h:76
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition: log.h:202
#define NS_LOG_LOGIC(msg)
Use NS_LOG to output a message of level LOG_LOGIC.
Definition: log.h:282
#define NS_LOG_FUNCTION(parameters)
If log level LOG_FUNCTION is enabled, this macro will output all input parameters separated by ",...
Every class exported by the ns3 library is enclosed in the ns3 namespace.
std::ostream & operator<<(std::ostream &os, const Angles &a)
Definition: angles.cc:159
Implement the data structure representing a TrafficFlowTemplate Packet Filter.
Definition: epc-tft.h:71
bool Matches(Direction d, Ipv4Address ra, Ipv4Address la, uint16_t rp, uint16_t lp, uint8_t tos)
Definition: epc-tft.cc:93