A Discrete-Event Network Simulator
API
wifi-aggregation.cc
Go to the documentation of this file.
1 /* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
2 /*
3  * Copyright (c) 2016 Sébastien Deronne
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation;
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Author: Sébastien Deronne <sebastien.deronne@gmail.com>
19  */
20 
21 #include "ns3/command-line.h"
22 #include "ns3/config.h"
23 #include "ns3/uinteger.h"
24 #include "ns3/boolean.h"
25 #include "ns3/string.h"
26 #include "ns3/log.h"
27 #include "ns3/yans-wifi-helper.h"
28 #include "ns3/ssid.h"
29 #include "ns3/mobility-helper.h"
30 #include "ns3/internet-stack-helper.h"
31 #include "ns3/ipv4-address-helper.h"
32 #include "ns3/udp-client-server-helper.h"
33 #include "ns3/packet-sink-helper.h"
34 #include "ns3/yans-wifi-channel.h"
35 #include "ns3/wifi-net-device.h"
36 #include "ns3/wifi-mac.h"
37 
38 // This is an example that illustrates how 802.11n aggregation is configured.
39 // It defines 4 independent Wi-Fi networks (working on different channels).
40 // Each network contains one access point and one station. Each station
41 // continuously transmits data packets to its respective AP.
42 //
43 // Network topology (numbers in parentheses are channel numbers):
44 //
45 // Network A (36) Network B (40) Network C (44) Network D (48)
46 // * * * * * * * *
47 // | | | | | | | |
48 // AP A STA A AP B STA B AP C STA C AP D STA D
49 //
50 // The aggregation parameters are configured differently on the 4 stations:
51 // - station A uses default aggregation parameter values (A-MSDU disabled, A-MPDU enabled with maximum size of 65 kB);
52 // - station B doesn't use aggregation (both A-MPDU and A-MSDU are disabled);
53 // - station C enables A-MSDU (with maximum size of 8 kB) but disables A-MPDU;
54 // - station D uses two-level aggregation (A-MPDU with maximum size of 32 kB and A-MSDU with maximum size of 4 kB).
55 //
56 //Packets in this simulation belong to BestEffort Access Class (AC_BE).
57 //
58 // The user can select the distance between the stations and the APs and can enable/disable the RTS/CTS mechanism.
59 // Example: ./waf --run "wifi-aggregation --distance=10 --enableRts=0 --simulationTime=20"
60 //
61 // The output prints the throughput measured for the 4 cases/networks described above. When default aggregation parameters are enabled, the
62 // maximum A-MPDU size is 65 kB and the throughput is maximal. When aggregation is disabled, the throughput is about the half of the physical
63 // bitrate. When only A-MSDU is enabled, the throughput is increased but is not maximal, since the maximum A-MSDU size is limited to 7935 bytes
64 // (whereas the maximum A-MPDU size is limited to 65535 bytes). When A-MSDU and A-MPDU are both enabled (= two-level aggregation),
65 // the throughput is slightly smaller than the first scenario since we set a smaller maximum A-MPDU size.
66 //
67 // When the distance is increased, the frame error rate gets higher, and the output shows how it affects the throughput for the 4 networks.
68 // Even through A-MSDU has less overheads than A-MPDU, A-MSDU is less robust against transmission errors than A-MPDU. When the distance is
69 // augmented, the throughput for the third scenario is more affected than the throughput obtained in other networks.
70 
71 using namespace ns3;
72 
73 NS_LOG_COMPONENT_DEFINE ("SimpleMpduAggregation");
74 
75 int main (int argc, char *argv[])
76 {
77  uint32_t payloadSize = 1472; //bytes
78  double simulationTime = 10; //seconds
79  double distance = 5; //meters
80  bool enableRts = 0;
81  bool enablePcap = 0;
82  bool verifyResults = 0; //used for regression
83 
84  CommandLine cmd (__FILE__);
85  cmd.AddValue ("payloadSize", "Payload size in bytes", payloadSize);
86  cmd.AddValue ("enableRts", "Enable or disable RTS/CTS", enableRts);
87  cmd.AddValue ("simulationTime", "Simulation time in seconds", simulationTime);
88  cmd.AddValue ("distance", "Distance in meters between the station and the access point", distance);
89  cmd.AddValue ("enablePcap", "Enable/disable pcap file generation", enablePcap);
90  cmd.AddValue ("verifyResults", "Enable/disable results verification at the end of the simulation", verifyResults);
91  cmd.Parse (argc, argv);
92 
93  Config::SetDefault ("ns3::WifiRemoteStationManager::RtsCtsThreshold", enableRts ? StringValue ("0") : StringValue ("999999"));
94 
96  wifiStaNodes.Create (4);
97  NodeContainer wifiApNodes;
98  wifiApNodes.Create (4);
99 
102  phy.SetPcapDataLinkType (WifiPhyHelper::DLT_IEEE802_11_RADIO);
103  phy.SetChannel (channel.Create ());
104 
106  wifi.SetStandard (WIFI_STANDARD_80211n_5GHZ);
107  wifi.SetRemoteStationManager ("ns3::ConstantRateWifiManager", "DataMode", StringValue ("HtMcs7"), "ControlMode", StringValue ("HtMcs0"));
109 
110  NetDeviceContainer staDeviceA, staDeviceB, staDeviceC, staDeviceD, apDeviceA, apDeviceB, apDeviceC, apDeviceD;
111  Ssid ssid;
112 
113  // Network A
114  ssid = Ssid ("network-A");
115  phy.Set ("ChannelNumber", UintegerValue (36));
116  mac.SetType ("ns3::StaWifiMac",
117  "Ssid", SsidValue (ssid));
118  staDeviceA = wifi.Install (phy, mac, wifiStaNodes.Get (0));
119 
120  mac.SetType ("ns3::ApWifiMac",
121  "Ssid", SsidValue (ssid),
122  "EnableBeaconJitter", BooleanValue (false));
123  apDeviceA = wifi.Install (phy, mac, wifiApNodes.Get (0));
124 
125  // Network B
126  ssid = Ssid ("network-B");
127  phy.Set ("ChannelNumber", UintegerValue (40));
128  mac.SetType ("ns3::StaWifiMac",
129  "Ssid", SsidValue (ssid));
130 
131  staDeviceB = wifi.Install (phy, mac, wifiStaNodes.Get (1));
132 
133  // Disable A-MPDU
134  Ptr<NetDevice> dev = wifiStaNodes.Get (1)->GetDevice (0);
135  Ptr<WifiNetDevice> wifi_dev = DynamicCast<WifiNetDevice> (dev);
136  wifi_dev->GetMac ()->SetAttribute ("BE_MaxAmpduSize", UintegerValue (0));
137 
138  mac.SetType ("ns3::ApWifiMac",
139  "Ssid", SsidValue (ssid),
140  "EnableBeaconJitter", BooleanValue (false));
141  apDeviceB = wifi.Install (phy, mac, wifiApNodes.Get (1));
142 
143  // Disable A-MPDU
144  dev = wifiApNodes.Get (1)->GetDevice (0);
145  wifi_dev = DynamicCast<WifiNetDevice> (dev);
146  wifi_dev->GetMac ()->SetAttribute ("BE_MaxAmpduSize", UintegerValue (0));
147 
148  // Network C
149  ssid = Ssid ("network-C");
150  phy.Set ("ChannelNumber", UintegerValue (44));
151  mac.SetType ("ns3::StaWifiMac",
152  "Ssid", SsidValue (ssid));
153 
154  staDeviceC = wifi.Install (phy, mac, wifiStaNodes.Get (2));
155 
156  // Disable A-MPDU and enable A-MSDU with the highest maximum size allowed by the standard (7935 bytes)
157  dev = wifiStaNodes.Get (2)->GetDevice (0);
158  wifi_dev = DynamicCast<WifiNetDevice> (dev);
159  wifi_dev->GetMac ()->SetAttribute ("BE_MaxAmpduSize", UintegerValue (0));
160  wifi_dev->GetMac ()->SetAttribute ("BE_MaxAmsduSize", UintegerValue (7935));
161 
162  mac.SetType ("ns3::ApWifiMac",
163  "Ssid", SsidValue (ssid),
164  "EnableBeaconJitter", BooleanValue (false));
165  apDeviceC = wifi.Install (phy, mac, wifiApNodes.Get (2));
166 
167  // Disable A-MPDU and enable A-MSDU with the highest maximum size allowed by the standard (7935 bytes)
168  dev = wifiApNodes.Get (2)->GetDevice (0);
169  wifi_dev = DynamicCast<WifiNetDevice> (dev);
170  wifi_dev->GetMac ()->SetAttribute ("BE_MaxAmpduSize", UintegerValue (0));
171  wifi_dev->GetMac ()->SetAttribute ("BE_MaxAmsduSize", UintegerValue (7935));
172 
173  // Network D
174  ssid = Ssid ("network-D");
175  phy.Set ("ChannelNumber", UintegerValue (48));
176  mac.SetType ("ns3::StaWifiMac",
177  "Ssid", SsidValue (ssid));
178 
179  staDeviceD = wifi.Install (phy, mac, wifiStaNodes.Get (3));
180 
181  // Enable A-MPDU with a smaller size than the default one and
182  // enable A-MSDU with the smallest maximum size allowed by the standard (3839 bytes)
183  dev = wifiStaNodes.Get (3)->GetDevice (0);
184  wifi_dev = DynamicCast<WifiNetDevice> (dev);
185  wifi_dev->GetMac ()->SetAttribute ("BE_MaxAmpduSize", UintegerValue (32768));
186  wifi_dev->GetMac ()->SetAttribute ("BE_MaxAmsduSize", UintegerValue (3839));
187 
188  mac.SetType ("ns3::ApWifiMac",
189  "Ssid", SsidValue (ssid),
190  "EnableBeaconJitter", BooleanValue (false));
191  apDeviceD = wifi.Install (phy, mac, wifiApNodes.Get (3));
192 
193  // Enable A-MPDU with a smaller size than the default one and
194  // enable A-MSDU with the smallest maximum size allowed by the standard (3839 bytes)
195  dev = wifiApNodes.Get (3)->GetDevice (0);
196  wifi_dev = DynamicCast<WifiNetDevice> (dev);
197  wifi_dev->GetMac ()->SetAttribute ("BE_MaxAmpduSize", UintegerValue (32768));
198  wifi_dev->GetMac ()->SetAttribute ("BE_MaxAmsduSize", UintegerValue (3839));
199 
200  // Setting mobility model
202  Ptr<ListPositionAllocator> positionAlloc = CreateObject<ListPositionAllocator> ();
203  mobility.SetMobilityModel ("ns3::ConstantPositionMobilityModel");
204 
205  // Set position for APs
206  positionAlloc->Add (Vector (0.0, 0.0, 0.0));
207  positionAlloc->Add (Vector (10.0, 0.0, 0.0));
208  positionAlloc->Add (Vector (20.0, 0.0, 0.0));
209  positionAlloc->Add (Vector (30.0, 0.0, 0.0));
210  // Set position for STAs
211  positionAlloc->Add (Vector (distance, 0.0, 0.0));
212  positionAlloc->Add (Vector (10 + distance, 0.0, 0.0));
213  positionAlloc->Add (Vector (20 + distance, 0.0, 0.0));
214  positionAlloc->Add (Vector (30 + distance, 0.0, 0.0));
215 
216  mobility.SetPositionAllocator (positionAlloc);
217  mobility.Install (wifiApNodes);
218  mobility.Install (wifiStaNodes);
219 
220  // Internet stack
222  stack.Install (wifiApNodes);
223  stack.Install (wifiStaNodes);
224 
226  address.SetBase ("192.168.1.0", "255.255.255.0");
227  Ipv4InterfaceContainer StaInterfaceA;
228  StaInterfaceA = address.Assign (staDeviceA);
229  Ipv4InterfaceContainer ApInterfaceA;
230  ApInterfaceA = address.Assign (apDeviceA);
231 
232  address.SetBase ("192.168.2.0", "255.255.255.0");
233  Ipv4InterfaceContainer StaInterfaceB;
234  StaInterfaceB = address.Assign (staDeviceB);
235  Ipv4InterfaceContainer ApInterfaceB;
236  ApInterfaceB = address.Assign (apDeviceB);
237 
238  address.SetBase ("192.168.3.0", "255.255.255.0");
239  Ipv4InterfaceContainer StaInterfaceC;
240  StaInterfaceC = address.Assign (staDeviceC);
241  Ipv4InterfaceContainer ApInterfaceC;
242  ApInterfaceC = address.Assign (apDeviceC);
243 
244  address.SetBase ("192.168.4.0", "255.255.255.0");
245  Ipv4InterfaceContainer StaInterfaceD;
246  StaInterfaceD = address.Assign (staDeviceD);
247  Ipv4InterfaceContainer ApInterfaceD;
248  ApInterfaceD = address.Assign (apDeviceD);
249 
250  // Setting applications
251  uint16_t port = 9;
252  UdpServerHelper serverA (port);
253  ApplicationContainer serverAppA = serverA.Install (wifiStaNodes.Get (0));
254  serverAppA.Start (Seconds (0.0));
255  serverAppA.Stop (Seconds (simulationTime + 1));
256 
257  UdpClientHelper clientA (StaInterfaceA.GetAddress (0), port);
258  clientA.SetAttribute ("MaxPackets", UintegerValue (4294967295u));
259  clientA.SetAttribute ("Interval", TimeValue (Time ("0.0001"))); //packets/s
260  clientA.SetAttribute ("PacketSize", UintegerValue (payloadSize));
261 
262  ApplicationContainer clientAppA = clientA.Install (wifiApNodes.Get (0));
263  clientAppA.Start (Seconds (1.0));
264  clientAppA.Stop (Seconds (simulationTime + 1));
265 
266  UdpServerHelper serverB (port);
267  ApplicationContainer serverAppB = serverB.Install (wifiStaNodes.Get (1));
268  serverAppB.Start (Seconds (0.0));
269  serverAppB.Stop (Seconds (simulationTime + 1));
270 
271  UdpClientHelper clientB (StaInterfaceB.GetAddress (0), port);
272  clientB.SetAttribute ("MaxPackets", UintegerValue (4294967295u));
273  clientB.SetAttribute ("Interval", TimeValue (Time ("0.0001"))); //packets/s
274  clientB.SetAttribute ("PacketSize", UintegerValue (payloadSize));
275 
276  ApplicationContainer clientAppB = clientB.Install (wifiApNodes.Get (1));
277  clientAppB.Start (Seconds (1.0));
278  clientAppB.Stop (Seconds (simulationTime + 1));
279 
280  UdpServerHelper serverC (port);
281  ApplicationContainer serverAppC = serverC.Install (wifiStaNodes.Get (2));
282  serverAppC.Start (Seconds (0.0));
283  serverAppC.Stop (Seconds (simulationTime + 1));
284 
285  UdpClientHelper clientC (StaInterfaceC.GetAddress (0), port);
286  clientC.SetAttribute ("MaxPackets", UintegerValue (4294967295u));
287  clientC.SetAttribute ("Interval", TimeValue (Time ("0.0001"))); //packets/s
288  clientC.SetAttribute ("PacketSize", UintegerValue (payloadSize));
289 
290  ApplicationContainer clientAppC = clientC.Install (wifiApNodes.Get (2));
291  clientAppC.Start (Seconds (1.0));
292  clientAppC.Stop (Seconds (simulationTime + 1));
293 
294  UdpServerHelper serverD (port);
295  ApplicationContainer serverAppD = serverD.Install (wifiStaNodes.Get (3));
296  serverAppD.Start (Seconds (0.0));
297  serverAppD.Stop (Seconds (simulationTime + 1));
298 
299  UdpClientHelper clientD (StaInterfaceD.GetAddress (0), port);
300  clientD.SetAttribute ("MaxPackets", UintegerValue (4294967295u));
301  clientD.SetAttribute ("Interval", TimeValue (Time ("0.0001"))); //packets/s
302  clientD.SetAttribute ("PacketSize", UintegerValue (payloadSize));
303 
304  ApplicationContainer clientAppD = clientD.Install (wifiApNodes.Get (3));
305  clientAppD.Start (Seconds (1.0));
306  clientAppD.Stop (Seconds (simulationTime + 1));
307 
308  if (enablePcap)
309  {
310  phy.EnablePcap ("AP_A", apDeviceA.Get (0));
311  phy.EnablePcap ("STA_A", staDeviceA.Get (0));
312  phy.EnablePcap ("AP_B", apDeviceB.Get (0));
313  phy.EnablePcap ("STA_B", staDeviceB.Get (0));
314  phy.EnablePcap ("AP_C", apDeviceC.Get (0));
315  phy.EnablePcap ("STA_C", staDeviceC.Get (0));
316  phy.EnablePcap ("AP_D", apDeviceD.Get (0));
317  phy.EnablePcap ("STA_D", staDeviceD.Get (0));
318  }
319 
320  Simulator::Stop (Seconds (simulationTime + 1));
321  Simulator::Run ();
322 
323  // Show results
324  uint64_t totalPacketsThroughA = DynamicCast<UdpServer> (serverAppA.Get (0))->GetReceived ();
325  uint64_t totalPacketsThroughB = DynamicCast<UdpServer> (serverAppB.Get (0))->GetReceived ();
326  uint64_t totalPacketsThroughC = DynamicCast<UdpServer> (serverAppC.Get (0))->GetReceived ();
327  uint64_t totalPacketsThroughD = DynamicCast<UdpServer> (serverAppD.Get (0))->GetReceived ();
328 
330 
331  double throughput = totalPacketsThroughA * payloadSize * 8 / (simulationTime * 1000000.0);
332  std::cout << "Throughput with default configuration (A-MPDU aggregation enabled, 65kB): " << throughput << " Mbit/s" << '\n';
333  if (verifyResults && (throughput < 58.5 || throughput > 59.5))
334  {
335  NS_LOG_ERROR ("Obtained throughput " << throughput << " is not in the expected boundaries!");
336  exit (1);
337  }
338 
339  throughput = totalPacketsThroughB * payloadSize * 8 / (simulationTime * 1000000.0);
340  std::cout << "Throughput with aggregation disabled: " << throughput << " Mbit/s" << '\n';
341  if (verifyResults && (throughput < 30 || throughput > 31))
342  {
343  NS_LOG_ERROR ("Obtained throughput " << throughput << " is not in the expected boundaries!");
344  exit (1);
345  }
346 
347  throughput = totalPacketsThroughC * payloadSize * 8 / (simulationTime * 1000000.0);
348  std::cout << "Throughput with A-MPDU disabled and A-MSDU enabled (8kB): " << throughput << " Mbit/s" << '\n';
349  if (verifyResults && (throughput < 51 || throughput > 52))
350  {
351  NS_LOG_ERROR ("Obtained throughput " << throughput << " is not in the expected boundaries!");
352  exit (1);
353  }
354 
355  throughput = totalPacketsThroughD * payloadSize * 8 / (simulationTime * 1000000.0);
356  std::cout << "Throughput with A-MPDU enabled (32kB) and A-MSDU enabled (4kB): " << throughput << " Mbit/s" << '\n';
357  if (verifyResults && (throughput < 58 || throughput > 59))
358  {
359  NS_LOG_ERROR ("Obtained throughput " << throughput << " is not in the expected boundaries!");
360  exit (1);
361  }
362 
363  return 0;
364 }
holds a vector of ns3::Application pointers.
Ptr< Application > Get(uint32_t i) const
Get the Ptr<Application> stored in this container at a given index.
void Start(Time start)
Arrange for all of the Applications in this container to Start() at the Time given as a parameter.
void Stop(Time stop)
Arrange for all of the Applications in this container to Stop() at the Time given as a parameter.
AttributeValue implementation for Boolean.
Definition: boolean.h:37
Parse command-line arguments.
Definition: command-line.h:229
aggregate IP/TCP/UDP functionality to existing Nodes.
A helper class to make life easier while doing simple IPv4 address assignment in scripts.
holds a vector of std::pair of Ptr<Ipv4> and interface index.
Ipv4Address GetAddress(uint32_t i, uint32_t j=0) const
Helper class used to assign positions and mobility models to nodes.
holds a vector of ns3::NetDevice pointers
Ptr< NetDevice > Get(uint32_t i) const
Get the Ptr<NetDevice> stored in this container at a given index.
keep track of a set of node pointers.
void Create(uint32_t n)
Create n nodes and append pointers to them to the end of this NodeContainer.
Ptr< Node > Get(uint32_t i) const
Get the Ptr<Node> stored in this container at a given index.
Ptr< NetDevice > GetDevice(uint32_t index) const
Retrieve the index-th NetDevice associated to this node.
Definition: node.cc:144
static void Stop(void)
Tell the Simulator the calling event should be the last one executed.
Definition: simulator.cc:180
static void Destroy(void)
Execute the events scheduled with ScheduleDestroy().
Definition: simulator.cc:136
static void Run(void)
Run the simulation.
Definition: simulator.cc:172
The IEEE 802.11 SSID Information Element.
Definition: ssid.h:36
AttributeValue implementation for Ssid.
Definition: ssid.h:105
Hold variables of type string.
Definition: string.h:41
Simulation virtual time values and global simulation resolution.
Definition: nstime.h:103
AttributeValue implementation for Time.
Definition: nstime.h:1308
Create a client application which sends UDP packets carrying a 32bit sequence number and a 64 bit tim...
Create a server application which waits for input UDP packets and uses the information carried into t...
Hold an unsigned integer type.
Definition: uinteger.h:44
helps to create WifiNetDevice objects
Definition: wifi-helper.h:274
create MAC layers for a ns3::WifiNetDevice.
Ptr< WifiMac > GetMac(void) const
@ DLT_IEEE802_11_RADIO
Include Radiotap link layer information.
Definition: wifi-helper.h:126
manage and create wifi channel objects for the YANS model.
static YansWifiChannelHelper Default(void)
Create a channel helper in a default working state.
Make it easy to create and manage PHY objects for the YANS model.
uint16_t port
Definition: dsdv-manet.cc:45
void SetDefault(std::string name, const AttributeValue &value)
Definition: config.cc:849
#define NS_LOG_ERROR(msg)
Use NS_LOG to output a message of level LOG_ERROR.
Definition: log.h:257
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition: log.h:205
Time Seconds(double value)
Construct a Time in the indicated unit.
Definition: nstime.h:1244
address
Definition: first.py:44
stack
Definition: first.py:41
Every class exported by the ns3 library is enclosed in the ns3 namespace.
cmd
Definition: second.py:35
ssid
Definition: third.py:100
channel
Definition: third.py:92
mac
Definition: third.py:99
wifi
Definition: third.py:96
mobility
Definition: third.py:108
wifiStaNodes
Definition: third.py:88
phy
Definition: third.py:93
bool enablePcap