A Discrete-Event Network Simulator
API
rrpaa-wifi-manager.cc
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2017 Universidad de la República - Uruguay
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation;
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
16  *
17  * Author: Matías Richart <mrichart@fing.edu.uy>
18  */
19 
20 #include "rrpaa-wifi-manager.h"
21 
22 #include "ns3/boolean.h"
23 #include "ns3/data-rate.h"
24 #include "ns3/double.h"
25 #include "ns3/log.h"
26 #include "ns3/packet.h"
27 #include "ns3/simulator.h"
28 #include "ns3/uinteger.h"
29 #include "ns3/wifi-mac.h"
30 #include "ns3/wifi-phy.h"
31 
32 NS_LOG_COMPONENT_DEFINE("RrpaaWifiManager");
33 
34 namespace ns3
35 {
36 
44 {
45  uint32_t m_counter;
46  uint32_t m_nFailed;
47  uint32_t m_adaptiveRtsWnd;
48  uint32_t m_rtsCounter;
53  uint8_t m_nRate;
54  uint8_t m_prevRateIndex;
55  uint8_t m_rateIndex;
56  uint8_t m_prevPowerLevel;
57  uint8_t m_powerLevel;
60 };
61 
63 
64 TypeId
66 {
67  static TypeId tid =
68  TypeId("ns3::RrpaaWifiManager")
70  .SetGroupName("Wifi")
71  .AddConstructor<RrpaaWifiManager>()
72  .AddAttribute(
73  "Basic",
74  "If true the RRPAA-BASIC algorithm will be used, otherwise the RRPAA will be used.",
75  BooleanValue(true),
78  .AddAttribute("Timeout",
79  "Timeout for the RRPAA-BASIC loss estimation block.",
80  TimeValue(MilliSeconds(500)),
83  .AddAttribute("FrameLength",
84  "The Data frame length (in bytes) used for calculating mode TxTime.",
85  UintegerValue(1420),
87  MakeUintegerChecker<uint32_t>())
88  .AddAttribute("AckFrameLength",
89  "The Ack frame length (in bytes) used for calculating mode TxTime.",
90  UintegerValue(14),
92  MakeUintegerChecker<uint32_t>())
93  .AddAttribute("Alpha",
94  "Constant for calculating the MTL threshold.",
95  DoubleValue(1.25),
97  MakeDoubleChecker<double>(1))
98  .AddAttribute("Beta",
99  "Constant for calculating the ORI threshold.",
100  DoubleValue(2),
102  MakeDoubleChecker<double>(1))
103  .AddAttribute("Tau",
104  "Constant for calculating the EWND size.",
105  DoubleValue(0.015),
107  MakeDoubleChecker<double>(0))
108  .AddAttribute("Gamma",
109  "Constant for Probabilistic Decision Table decrements.",
110  DoubleValue(2),
112  MakeDoubleChecker<double>(1))
113  .AddAttribute("Delta",
114  "Constant for Probabilistic Decision Table increments.",
115  DoubleValue(1.0905),
117  MakeDoubleChecker<double>(1))
118  .AddTraceSource("RateChange",
119  "The transmission rate has change.",
121  "ns3::WifiRemoteStationManager::RateChangeTracedCallback")
122  .AddTraceSource("PowerChange",
123  "The transmission power has change.",
125  "ns3::WifiRemoteStationManager::PowerChangeTracedCallback");
126  return tid;
127 }
128 
130 {
131  NS_LOG_FUNCTION(this);
132  m_uniformRandomVariable = CreateObject<UniformRandomVariable>();
133 }
134 
136 {
137  NS_LOG_FUNCTION(this);
138 }
139 
140 int64_t
142 {
143  NS_LOG_FUNCTION(this << stream);
145  return 1;
146 }
147 
148 void
150 {
151  NS_LOG_FUNCTION(this << phy);
152  m_sifs = phy->GetSifs();
153  m_difs = m_sifs + 2 * phy->GetSlot();
154  m_nPowerLevels = phy->GetNTxPower();
156  m_minPowerLevel = 0;
157  for (const auto& mode : phy->GetModeList())
158  {
159  WifiTxVector txVector;
160  txVector.SetMode(mode);
162  /* Calculate the TX Time of the Data and the corresponding Ack */
163  Time dataTxTime = phy->CalculateTxDuration(m_frameLength, txVector, phy->GetPhyBand());
164  Time ackTxTime = phy->CalculateTxDuration(m_ackLength, txVector, phy->GetPhyBand());
165  NS_LOG_DEBUG("Calculating TX times: Mode= " << mode << " DataTxTime= " << dataTxTime
166  << " AckTxTime= " << ackTxTime);
167  AddCalcTxTime(mode, dataTxTime + ackTxTime);
168  }
170 }
171 
172 void
174 {
175  NS_LOG_FUNCTION(this << mac);
177 }
178 
179 void
181 {
182  NS_LOG_FUNCTION(this);
183  if (GetHtSupported())
184  {
185  NS_FATAL_ERROR("WifiRemoteStationManager selected does not support HT rates");
186  }
187  if (GetVhtSupported())
188  {
189  NS_FATAL_ERROR("WifiRemoteStationManager selected does not support VHT rates");
190  }
191  if (GetHeSupported())
192  {
193  NS_FATAL_ERROR("WifiRemoteStationManager selected does not support HE rates");
194  }
195 }
196 
197 Time
199 {
200  NS_LOG_FUNCTION(this << mode);
201  for (auto i = m_calcTxTime.begin(); i != m_calcTxTime.end(); i++)
202  {
203  if (mode == i->second)
204  {
205  return i->first;
206  }
207  }
208  NS_ASSERT(false);
209  return Seconds(0);
210 }
211 
212 void
214 {
215  NS_LOG_FUNCTION(this << mode << t);
216  m_calcTxTime.emplace_back(t, mode);
217 }
218 
221 {
222  NS_LOG_FUNCTION(this << station << mode);
223  WifiRrpaaThresholds threshold;
224  for (auto i = station->m_thresholds.begin(); i != station->m_thresholds.end(); i++)
225  {
226  if (mode == i->second)
227  {
228  return i->first;
229  }
230  }
231  NS_ABORT_MSG("No thresholds for mode " << mode << " found");
232  return threshold; // Silence compiler warning
233 }
234 
237 {
238  NS_LOG_FUNCTION(this);
239  auto station = new RrpaaWifiRemoteStation();
240  station->m_adaptiveRtsWnd = 0;
241  station->m_rtsCounter = 0;
242  station->m_adaptiveRtsOn = false;
243  station->m_lastFrameFail = false;
244  station->m_initialized = false;
245  return station;
246 }
247 
248 void
250 {
251  NS_LOG_FUNCTION(this << station);
252  if (!station->m_initialized)
253  {
254  // Note: we appear to be doing late initialization of the table
255  // to make sure that the set of supported rates has been initialized
256  // before we perform our own initialization.
257  station->m_nRate = GetNSupported(station);
258  // Initialize at minimal rate and maximal power.
259  station->m_prevRateIndex = 0;
260  station->m_rateIndex = 0;
262  station->m_powerLevel = m_maxPowerLevel;
263  WifiMode mode = GetSupported(station, 0);
264  uint16_t channelWidth = GetChannelWidth(station);
265  DataRate rate(mode.GetDataRate(channelWidth));
266  double power = GetPhy()->GetPowerDbm(station->m_powerLevel);
267  m_rateChange(rate, rate, station->m_state->m_address);
268  m_powerChange(power, power, station->m_state->m_address);
269 
270  station->m_pdTable =
271  RrpaaProbabilitiesTable(station->m_nRate, std::vector<double>(m_nPowerLevels));
272  NS_LOG_DEBUG("Initializing pdTable");
273  for (uint8_t i = 0; i < station->m_nRate; i++)
274  {
275  for (uint8_t j = 0; j < m_nPowerLevels; j++)
276  {
277  station->m_pdTable[i][j] = 1;
278  }
279  }
280 
281  station->m_initialized = true;
282 
283  station->m_thresholds = RrpaaThresholdsTable(station->m_nRate);
284  InitThresholds(station);
285  ResetCountersBasic(station);
286  }
287 }
288 
289 void
291 {
292  NS_LOG_FUNCTION(this << station);
293  double nextCritical = 0;
294  double nextMtl = 0;
295  double mtl = 0;
296  double ori = 0;
297  for (uint8_t i = 0; i < station->m_nRate; i++)
298  {
299  WifiMode mode = GetSupported(station, i);
300  Time totalTxTime = GetCalcTxTime(mode) + m_sifs + m_difs;
301  if (i == station->m_nRate - 1)
302  {
303  ori = 0;
304  }
305  else
306  {
307  WifiMode nextMode = GetSupported(station, i + 1);
308  Time nextTotalTxTime = GetCalcTxTime(nextMode) + m_sifs + m_difs;
309  nextCritical = 1 - (nextTotalTxTime.GetSeconds() / totalTxTime.GetSeconds());
310  nextMtl = m_alpha * nextCritical;
311  ori = nextMtl / m_beta;
312  }
313  if (i == 0)
314  {
315  mtl = nextMtl;
316  }
318  th.m_ewnd = static_cast<uint32_t>(ceil(m_tau / totalTxTime.GetSeconds()));
319  th.m_ori = ori;
320  th.m_mtl = mtl;
321  station->m_thresholds.emplace_back(th, mode);
322  mtl = nextMtl;
323  NS_LOG_DEBUG(mode << " " << th.m_ewnd << " " << th.m_mtl << " " << th.m_ori);
324  }
325 }
326 
327 void
329 {
330  NS_LOG_FUNCTION(this << station);
331  station->m_nFailed = 0;
332  station->m_counter = GetThresholds(station, station->m_rateIndex).m_ewnd;
333  station->m_lastReset = Simulator::Now();
334 }
335 
336 void
338 {
339  NS_LOG_FUNCTION(this << st);
340 }
341 
342 void
344 {
345  NS_LOG_FUNCTION(this << st);
346  auto station = static_cast<RrpaaWifiRemoteStation*>(st);
347  CheckInit(station);
348  station->m_lastFrameFail = true;
349  CheckTimeout(station);
350  station->m_counter--;
351  station->m_nFailed++;
352  RunBasicAlgorithm(station);
353 }
354 
355 void
357 {
358  NS_LOG_FUNCTION(this << st << rxSnr << txMode);
359 }
360 
361 void
363  double ctsSnr,
364  WifiMode ctsMode,
365  double rtsSnr)
366 {
367  NS_LOG_FUNCTION(this << st << ctsSnr << ctsMode << rtsSnr);
368 }
369 
370 void
372  double ackSnr,
373  WifiMode ackMode,
374  double dataSnr,
375  uint16_t dataChannelWidth,
376  uint8_t dataNss)
377 {
378  NS_LOG_FUNCTION(this << st << ackSnr << ackMode << dataSnr << dataChannelWidth << +dataNss);
379  auto station = static_cast<RrpaaWifiRemoteStation*>(st);
380  CheckInit(station);
381  station->m_lastFrameFail = false;
382  CheckTimeout(station);
383  station->m_counter--;
384  RunBasicAlgorithm(station);
385 }
386 
387 void
389 {
390  NS_LOG_FUNCTION(this << st);
391 }
392 
393 void
395 {
396  NS_LOG_FUNCTION(this << st);
397 }
398 
401 {
402  NS_LOG_FUNCTION(this << st << allowedWidth);
403  auto station = static_cast<RrpaaWifiRemoteStation*>(st);
404  uint16_t channelWidth = GetChannelWidth(station);
405  if (channelWidth > 20 && channelWidth != 22)
406  {
407  channelWidth = 20;
408  }
409  CheckInit(station);
410  WifiMode mode = GetSupported(station, station->m_rateIndex);
411  DataRate rate(mode.GetDataRate(channelWidth));
412  DataRate prevRate(GetSupported(station, station->m_prevRateIndex).GetDataRate(channelWidth));
413  double power = GetPhy()->GetPowerDbm(station->m_powerLevel);
414  double prevPower = GetPhy()->GetPowerDbm(station->m_prevPowerLevel);
415  if (station->m_prevRateIndex != station->m_rateIndex)
416  {
417  m_rateChange(prevRate, rate, station->m_state->m_address);
418  station->m_prevRateIndex = station->m_rateIndex;
419  }
420  if (station->m_prevPowerLevel != station->m_powerLevel)
421  {
422  m_powerChange(prevPower, power, station->m_state->m_address);
423  station->m_prevPowerLevel = station->m_powerLevel;
424  }
425  return WifiTxVector(
426  mode,
427  station->m_powerLevel,
429  800,
430  1,
431  1,
432  0,
433  channelWidth,
434  GetAggregation(station));
435 }
436 
439 {
440  NS_LOG_FUNCTION(this << st);
441  auto station = static_cast<RrpaaWifiRemoteStation*>(st);
442  uint16_t channelWidth = GetChannelWidth(station);
443  if (channelWidth > 20 && channelWidth != 22)
444  {
445  channelWidth = 20;
446  }
447  WifiMode mode;
448  if (!GetUseNonErpProtection())
449  {
450  mode = GetSupported(station, 0);
451  }
452  else
453  {
454  mode = GetNonErpSupported(station, 0);
455  }
456  return WifiTxVector(
457  mode,
460  800,
461  1,
462  1,
463  0,
464  channelWidth,
465  GetAggregation(station));
466 }
467 
468 bool
469 RrpaaWifiManager::DoNeedRts(WifiRemoteStation* st, uint32_t size, bool normally)
470 {
471  NS_LOG_FUNCTION(this << st << size << normally);
472  auto station = static_cast<RrpaaWifiRemoteStation*>(st);
473  CheckInit(station);
474  if (m_basic)
475  {
476  return normally;
477  }
478  RunAdaptiveRtsAlgorithm(station);
479  return station->m_adaptiveRtsOn;
480 }
481 
482 void
484 {
485  NS_LOG_FUNCTION(this << station);
486  Time d = Simulator::Now() - station->m_lastReset;
487  if (station->m_counter == 0 || d > m_timeout)
488  {
489  ResetCountersBasic(station);
490  }
491 }
492 
493 void
495 {
496  NS_LOG_FUNCTION(this << station);
497  WifiRrpaaThresholds thresholds = GetThresholds(station, station->m_rateIndex);
498  double bploss = (static_cast<double>(station->m_nFailed) / thresholds.m_ewnd);
499  double wploss =
500  (static_cast<double>(station->m_counter + station->m_nFailed) / thresholds.m_ewnd);
501  NS_LOG_DEBUG("Best loss prob= " << bploss);
502  NS_LOG_DEBUG("Worst loss prob= " << wploss);
503  if (bploss >= thresholds.m_mtl)
504  {
505  if (station->m_powerLevel < m_maxPowerLevel)
506  {
507  NS_LOG_DEBUG("bploss >= MTL and power < maxPower => Increase Power");
508  station->m_pdTable[station->m_rateIndex][station->m_powerLevel] /= m_gamma;
509  NS_LOG_DEBUG("pdTable["
510  << +station->m_rateIndex << "][" << station->m_powerLevel << "] = "
511  << station->m_pdTable[station->m_rateIndex][station->m_powerLevel]);
512  station->m_powerLevel++;
513  ResetCountersBasic(station);
514  }
515  else if (station->m_rateIndex != 0)
516  {
517  NS_LOG_DEBUG("bploss >= MTL and power = maxPower => Decrease Rate");
518  station->m_pdTable[station->m_rateIndex][station->m_powerLevel] /= m_gamma;
519  NS_LOG_DEBUG("pdTable["
520  << +station->m_rateIndex << "][" << station->m_powerLevel << "] = "
521  << station->m_pdTable[station->m_rateIndex][station->m_powerLevel]);
522  station->m_rateIndex--;
523  ResetCountersBasic(station);
524  }
525  else
526  {
527  NS_LOG_DEBUG("bploss >= MTL but already at maxPower and minRate");
528  }
529  }
530  else if (wploss <= thresholds.m_ori)
531  {
532  if (station->m_rateIndex < station->m_nRate - 1)
533  {
534  NS_LOG_DEBUG("wploss <= ORI and rate < maxRate => Probabilistic Rate Increase");
535 
536  // Recalculate probabilities of lower rates.
537  for (uint8_t i = 0; i <= station->m_rateIndex; i++)
538  {
539  station->m_pdTable[i][station->m_powerLevel] *= m_delta;
540  if (station->m_pdTable[i][station->m_powerLevel] > 1)
541  {
542  station->m_pdTable[i][station->m_powerLevel] = 1;
543  }
544  NS_LOG_DEBUG("pdTable[" << i << "][" << (int)station->m_powerLevel
545  << "] = " << station->m_pdTable[i][station->m_powerLevel]);
546  }
547  double rand = m_uniformRandomVariable->GetValue(0, 1);
548  if (rand < station->m_pdTable[station->m_rateIndex + 1][station->m_powerLevel])
549  {
550  NS_LOG_DEBUG("Increase Rate");
551  station->m_rateIndex++;
552  }
553  }
554  else if (station->m_powerLevel > m_minPowerLevel)
555  {
556  NS_LOG_DEBUG("wploss <= ORI and rate = maxRate => Probabilistic Power Decrease");
557 
558  // Recalculate probabilities of higher powers.
559  for (uint32_t i = m_maxPowerLevel; i > station->m_powerLevel; i--)
560  {
561  station->m_pdTable[station->m_rateIndex][i] *= m_delta;
562  if (station->m_pdTable[station->m_rateIndex][i] > 1)
563  {
564  station->m_pdTable[station->m_rateIndex][i] = 1;
565  }
566  NS_LOG_DEBUG("pdTable[" << +station->m_rateIndex << "][" << i
567  << "] = " << station->m_pdTable[station->m_rateIndex][i]);
568  }
569  double rand = m_uniformRandomVariable->GetValue(0, 1);
570  if (rand < station->m_pdTable[station->m_rateIndex][station->m_powerLevel - 1])
571  {
572  NS_LOG_DEBUG("Decrease Power");
573  station->m_powerLevel--;
574  }
575  }
576  ResetCountersBasic(station);
577  }
578  else if (bploss > thresholds.m_ori && wploss < thresholds.m_mtl)
579  {
580  if (station->m_powerLevel > m_minPowerLevel)
581  {
582  NS_LOG_DEBUG("loss between ORI and MTL and power > minPowerLevel => Probabilistic "
583  "Power Decrease");
584 
585  // Recalculate probabilities of higher powers.
586  for (uint32_t i = m_maxPowerLevel; i >= station->m_powerLevel; i--)
587  {
588  station->m_pdTable[station->m_rateIndex][i] *= m_delta;
589  if (station->m_pdTable[station->m_rateIndex][i] > 1)
590  {
591  station->m_pdTable[station->m_rateIndex][i] = 1;
592  }
593  NS_LOG_DEBUG("pdTable[" << +station->m_rateIndex << "][" << i
594  << "] = " << station->m_pdTable[station->m_rateIndex][i]);
595  }
596  double rand = m_uniformRandomVariable->GetValue(0, 1);
597  if (rand < station->m_pdTable[station->m_rateIndex][station->m_powerLevel - 1])
598  {
599  NS_LOG_DEBUG("Decrease Power");
600  station->m_powerLevel--;
601  }
602  ResetCountersBasic(station);
603  }
604  }
605  if (station->m_counter == 0)
606  {
607  ResetCountersBasic(station);
608  }
609 }
610 
611 void
613 {
614  NS_LOG_FUNCTION(this << station);
615  if (!station->m_adaptiveRtsOn && station->m_lastFrameFail)
616  {
617  station->m_adaptiveRtsWnd += 2;
618  station->m_rtsCounter = station->m_adaptiveRtsWnd;
619  }
620  else if ((station->m_adaptiveRtsOn && station->m_lastFrameFail) ||
621  (!station->m_adaptiveRtsOn && !station->m_lastFrameFail))
622  {
623  station->m_adaptiveRtsWnd = station->m_adaptiveRtsWnd / 2;
624  station->m_rtsCounter = station->m_adaptiveRtsWnd;
625  }
626  if (station->m_rtsCounter > 0)
627  {
628  station->m_adaptiveRtsOn = true;
629  station->m_rtsCounter--;
630  }
631  else
632  {
633  station->m_adaptiveRtsOn = false;
634  }
635 }
636 
639 {
640  NS_LOG_FUNCTION(this << station << +index);
641  WifiMode mode = GetSupported(station, index);
642  return GetThresholds(station, mode);
643 }
644 
645 } // namespace ns3
Class for representing data rates.
Definition: data-rate.h:89
This class can be used to hold variables of floating point type such as 'double' or 'float'.
Definition: double.h:42
void SetStream(int64_t stream)
Specifies the stream number for the RngStream.
Time m_sifs
Value of SIFS configured in the device.
Ptr< UniformRandomVariable > m_uniformRandomVariable
Provides uniform random variables for probabilistic changes.
uint8_t m_maxPowerLevel
Maximal power level.
void ResetCountersBasic(RrpaaWifiRemoteStation *station)
Reset the counters of the given station.
double m_beta
Beta value for RRPAA (value for calculating ORI threshold).
int64_t AssignStreams(int64_t stream) override
Assign a fixed random variable stream number to the random variables used by this model.
Time m_difs
Value of DIFS configured in the device.
WifiRemoteStation * DoCreateStation() const override
bool m_basic
If using the basic algorithm (without RTS/CTS).
void DoInitialize() override
Initialize() implementation.
void DoReportRtsFailed(WifiRemoteStation *station) override
This method is a pure virtual method that must be implemented by the sub-class.
void SetupPhy(const Ptr< WifiPhy > phy) override
Set up PHY associated with this device since it is the object that knows the full set of transmit rat...
TxTime m_calcTxTime
To hold all the calculated TxTime for all modes.
void CheckInit(RrpaaWifiRemoteStation *station)
Check for initializations.
WifiTxVector DoGetDataTxVector(WifiRemoteStation *station, uint16_t allowedWidth) override
TracedCallback< double, double, Mac48Address > m_powerChange
The trace source fired when the transmission power change.
uint8_t m_minPowerLevel
Differently form rate, power levels do not depend on the remote station.
void DoReportRtsOk(WifiRemoteStation *station, double ctsSnr, WifiMode ctsMode, double rtsSnr) override
This method is a pure virtual method that must be implemented by the sub-class.
void SetupMac(const Ptr< WifiMac > mac) override
Set up MAC associated with this device since it is the object that knows the full set of timing param...
void RunAdaptiveRtsAlgorithm(RrpaaWifiRemoteStation *station)
Run an enhanced algorithm which activates the use of RTS for the given station if the conditions are ...
TracedCallback< DataRate, DataRate, Mac48Address > m_rateChange
The trace source fired when the transmission rate change.
Time m_timeout
Timeout for the RRAA BASIC loss estimation block.
uint32_t m_ackLength
Ack frame length used to calculate mode TxTime (in bytes).
uint8_t m_nPowerLevels
Number of power levels.
WifiRrpaaThresholds GetThresholds(RrpaaWifiRemoteStation *station, WifiMode mode) const
Get the thresholds for the given station and mode.
void DoReportDataOk(WifiRemoteStation *station, double ackSnr, WifiMode ackMode, double dataSnr, uint16_t dataChannelWidth, uint8_t dataNss) override
This method is a pure virtual method that must be implemented by the sub-class.
double m_tau
Tau value for RRPAA (value for calculating EWND size).
void DoReportRxOk(WifiRemoteStation *station, double rxSnr, WifiMode txMode) override
This method is a pure virtual method that must be implemented by the sub-class.
double m_gamma
Gamma value for RRPAA (value for pdTable decrements).
Time GetCalcTxTime(WifiMode mode) const
Get the estimated TxTime of a packet with a given mode.
double m_delta
Delta value for RRPAA (value for pdTable increments).
void CheckTimeout(RrpaaWifiRemoteStation *station)
Check if the counter should be reset.
double m_alpha
Alpha value for RRPAA (value for calculating MTL threshold)
bool DoNeedRts(WifiRemoteStation *st, uint32_t size, bool normally) override
void DoReportFinalDataFailed(WifiRemoteStation *station) override
This method is a pure virtual method that must be implemented by the sub-class.
void DoReportDataFailed(WifiRemoteStation *station) override
This method is a pure virtual method that must be implemented by the sub-class.
void DoReportFinalRtsFailed(WifiRemoteStation *station) override
This method is a pure virtual method that must be implemented by the sub-class.
uint32_t m_frameLength
Data frame length used to calculate mode TxTime (in bytes).
void AddCalcTxTime(WifiMode mode, Time t)
Add transmission time for the given mode to an internal list.
void InitThresholds(RrpaaWifiRemoteStation *station)
Initialize the thresholds internal list for the given station.
WifiTxVector DoGetRtsTxVector(WifiRemoteStation *station) override
static TypeId GetTypeId()
Register this type.
void RunBasicAlgorithm(RrpaaWifiRemoteStation *station)
Find an appropriate rate and power for the given station, using a basic algorithm.
static Time Now()
Return the current simulation virtual time.
Definition: simulator.cc:208
Simulation virtual time values and global simulation resolution.
Definition: nstime.h:105
double GetSeconds() const
Get an approximation of the time stored in this instance in the indicated unit.
Definition: nstime.h:403
a unique identifier for an interface.
Definition: type-id.h:59
TypeId SetParent(TypeId tid)
Set the parent TypeId.
Definition: type-id.cc:931
Hold an unsigned integer type.
Definition: uinteger.h:45
double GetValue(double min, double max)
Get the next random value drawn from the distribution.
represent a single transmission mode
Definition: wifi-mode.h:51
WifiModulationClass GetModulationClass() const
Definition: wifi-mode.cc:185
uint64_t GetDataRate(uint16_t channelWidth, uint16_t guardInterval, uint8_t nss) const
Definition: wifi-mode.cc:122
double GetPowerDbm(uint8_t power) const
Get the power of the given power level in dBm.
Definition: wifi-phy.cc:671
hold a list of per-remote-station state.
uint16_t GetChannelWidth(const WifiRemoteStation *station) const
Return the channel width supported by the station.
uint8_t GetNSupported(const WifiRemoteStation *station) const
Return the number of modes supported by the given station.
Ptr< WifiPhy > GetPhy() const
Return the WifiPhy.
bool GetAggregation(const WifiRemoteStation *station) const
Return whether the given station supports A-MPDU.
bool GetHtSupported() const
Return whether the device has HT capability support enabled.
WifiMode GetNonErpSupported(const WifiRemoteStation *station, uint8_t i) const
Return whether non-ERP mode associated with the specified station at the specified index.
virtual void SetupPhy(const Ptr< WifiPhy > phy)
Set up PHY associated with this device since it is the object that knows the full set of transmit rat...
bool GetUseNonErpProtection() const
Return whether the device supports protection of non-ERP stations.
bool GetVhtSupported() const
Return whether the device has VHT capability support enabled.
bool GetShortPreambleEnabled() const
Return whether the device uses short PHY preambles.
WifiMode GetSupported(const WifiRemoteStation *station, uint8_t i) const
Return whether mode associated with the specified station at the specified index.
bool GetHeSupported() const
Return whether the device has HE capability support enabled.
virtual void SetupMac(const Ptr< WifiMac > mac)
Set up MAC associated with this device since it is the object that knows the full set of timing param...
This class mimics the TXVECTOR which is to be passed to the PHY in order to define the parameters whi...
void SetMode(WifiMode mode)
Sets the selected payload transmission mode.
void SetPreambleType(WifiPreamble preamble)
Sets the preamble type.
#define NS_ASSERT(condition)
At runtime, in debugging builds, if this condition is not true, the program prints the source file,...
Definition: assert.h:66
#define NS_FATAL_ERROR(msg)
Report a fatal error with a message and terminate.
Definition: fatal-error.h:179
#define NS_ABORT_MSG(msg)
Unconditional abnormal program termination with a message.
Definition: abort.h:49
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition: log.h:202
#define NS_LOG_DEBUG(msg)
Use NS_LOG to output a message of level LOG_DEBUG.
Definition: log.h:268
#define NS_LOG_FUNCTION(parameters)
If log level LOG_FUNCTION is enabled, this macro will output all input parameters separated by ",...
#define NS_OBJECT_ENSURE_REGISTERED(type)
Register an Object subclass with the TypeId system.
Definition: object-base.h:46
Time Seconds(double value)
Construct a Time in the indicated unit.
Definition: nstime.h:1326
Time MilliSeconds(uint64_t value)
Construct a Time in the indicated unit.
Definition: nstime.h:1338
Ptr< const TraceSourceAccessor > MakeTraceSourceAccessor(T a)
Create a TraceSourceAccessor which will control access to the underlying trace source.
@ WIFI_PREAMBLE_LONG
Every class exported by the ns3 library is enclosed in the ns3 namespace.
Ptr< const AttributeChecker > MakeBooleanChecker()
Definition: boolean.cc:124
std::vector< std::vector< double > > RrpaaProbabilitiesTable
List of probabilities.
Ptr< const AttributeAccessor > MakeTimeAccessor(T1 a1)
Definition: nstime.h:1414
Ptr< const AttributeChecker > MakeTimeChecker(const Time min, const Time max)
Helper to make a Time checker with bounded range.
Definition: time.cc:533
Ptr< const AttributeAccessor > MakeBooleanAccessor(T1 a1)
Definition: boolean.h:86
Ptr< const AttributeAccessor > MakeDoubleAccessor(T1 a1)
Definition: double.h:43
WifiPreamble GetPreambleForTransmission(WifiModulationClass modulation, bool useShortPreamble)
Return the preamble to be used for the transmission.
Ptr< const AttributeAccessor > MakeUintegerAccessor(T1 a1)
Definition: uinteger.h:46
std::vector< std::pair< WifiRrpaaThresholds, WifiMode > > RrpaaThresholdsTable
List of thresholds for each mode.
mac
Definition: third.py:92
phy
Definition: third.py:89
Hold per-remote-station state for RRPAA Wifi manager.
uint32_t m_rtsCounter
Counter for RTS transmission attempts.
uint32_t m_counter
Counter for transmission attempts.
bool m_initialized
For initializing variables.
uint32_t m_nFailed
Number of failed transmission attempts.
uint8_t m_prevPowerLevel
Power level of the previous transmission.
RrpaaThresholdsTable m_thresholds
RRPAA thresholds for this station.
Time m_lastReset
Time of the last reset.
bool m_adaptiveRtsOn
Check if Adaptive RTS mechanism is on.
uint8_t m_prevRateIndex
Rate index of the previous transmission.
bool m_lastFrameFail
Flag if the last frame sent has failed.
uint8_t m_nRate
Number of supported rates.
uint8_t m_powerLevel
Current power level.
RrpaaProbabilitiesTable m_pdTable
Probability table for power and rate changes.
uint8_t m_rateIndex
Current rate index.
uint32_t m_adaptiveRtsWnd
Window size for the Adaptive RTS mechanism.
hold per-remote-station state.
WifiRemoteStationState * m_state
Remote station state.
Mac48Address m_address
Mac48Address of the remote station.
Robust Rate and Power Adaptation Algorithm.
double m_ori
The Opportunistic Rate Increase threshold.
uint32_t m_ewnd
The Estimation Window size.
double m_mtl
The Maximum Tolerable Loss threshold.