A Discrete-Event Network Simulator
API
wifi-remote-station-manager.cc
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2005,2006,2007 INRIA
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation;
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
16  *
17  * Author: Mathieu Lacage <mathieu.lacage@sophia.inria.fr>
18  */
19 
21 
22 #include "ap-wifi-mac.h"
23 #include "sta-wifi-mac.h"
24 #include "wifi-mac-header.h"
25 #include "wifi-mac-trailer.h"
26 #include "wifi-mpdu.h"
27 #include "wifi-net-device.h"
28 #include "wifi-phy.h"
29 
30 #include "ns3/boolean.h"
31 #include "ns3/eht-configuration.h"
32 #include "ns3/enum.h"
33 #include "ns3/erp-ofdm-phy.h"
34 #include "ns3/he-configuration.h"
35 #include "ns3/ht-configuration.h"
36 #include "ns3/ht-phy.h"
37 #include "ns3/log.h"
38 #include "ns3/simulator.h"
39 #include "ns3/uinteger.h"
40 #include "ns3/vht-configuration.h"
41 
42 namespace ns3
43 {
44 
45 NS_LOG_COMPONENT_DEFINE("WifiRemoteStationManager");
46 
47 NS_OBJECT_ENSURE_REGISTERED(WifiRemoteStationManager);
48 
49 TypeId
51 {
52  static TypeId tid =
53  TypeId("ns3::WifiRemoteStationManager")
54  .SetParent<Object>()
55  .SetGroupName("Wifi")
56  .AddAttribute("MaxSsrc",
57  "The maximum number of retransmission attempts for any packet with size "
58  "<= RtsCtsThreshold. "
59  "This value will not have any effect on some rate control algorithms.",
60  UintegerValue(7),
62  MakeUintegerChecker<uint32_t>())
63  .AddAttribute("MaxSlrc",
64  "The maximum number of retransmission attempts for any packet with size "
65  "> RtsCtsThreshold. "
66  "This value will not have any effect on some rate control algorithms.",
67  UintegerValue(4),
69  MakeUintegerChecker<uint32_t>())
70  .AddAttribute("RtsCtsThreshold",
71  "If the size of the PSDU is bigger than this value, we use an RTS/CTS "
72  "handshake before sending the data frame."
73  "This value will not have any effect on some rate control algorithms.",
74  UintegerValue(4692480),
76  MakeUintegerChecker<uint32_t>(0, 4692480))
77  .AddAttribute(
78  "FragmentationThreshold",
79  "If the size of the PSDU is bigger than this value, we fragment it such that the "
80  "size of the fragments are equal or smaller. "
81  "This value does not apply when it is carried in an A-MPDU. "
82  "This value will not have any effect on some rate control algorithms.",
83  UintegerValue(65535),
86  MakeUintegerChecker<uint32_t>())
87  .AddAttribute("NonUnicastMode",
88  "Wifi mode used for non-unicast transmissions.",
89  WifiModeValue(),
90  MakeWifiModeAccessor(&WifiRemoteStationManager::m_nonUnicastMode),
91  MakeWifiModeChecker())
92  .AddAttribute("DefaultTxPowerLevel",
93  "Default power level to be used for transmissions. "
94  "This is the power level that is used by all those WifiManagers that do "
95  "not implement TX power control.",
96  UintegerValue(0),
98  MakeUintegerChecker<uint8_t>())
99  .AddAttribute("ErpProtectionMode",
100  "Protection mode used when non-ERP STAs are connected to an ERP AP: "
101  "Rts-Cts or Cts-To-Self",
103  MakeEnumAccessor<WifiRemoteStationManager::ProtectionMode>(
106  "Rts-Cts",
108  "Cts-To-Self"))
109  .AddAttribute("HtProtectionMode",
110  "Protection mode used when non-HT STAs are connected to a HT AP: Rts-Cts "
111  "or Cts-To-Self",
113  MakeEnumAccessor<WifiRemoteStationManager::ProtectionMode>(
116  "Rts-Cts",
118  "Cts-To-Self"))
119  .AddTraceSource("MacTxRtsFailed",
120  "The transmission of a RTS by the MAC layer has failed",
122  "ns3::Mac48Address::TracedCallback")
123  .AddTraceSource("MacTxDataFailed",
124  "The transmission of a data packet by the MAC layer has failed",
126  "ns3::Mac48Address::TracedCallback")
127  .AddTraceSource(
128  "MacTxFinalRtsFailed",
129  "The transmission of a RTS has exceeded the maximum number of attempts",
131  "ns3::Mac48Address::TracedCallback")
132  .AddTraceSource(
133  "MacTxFinalDataFailed",
134  "The transmission of a data packet has exceeded the maximum number of attempts",
136  "ns3::Mac48Address::TracedCallback");
137  return tid;
138 }
139 
141  : m_useNonErpProtection(false),
142  m_useNonHtProtection(false),
143  m_shortPreambleEnabled(false),
144  m_shortSlotTimeEnabled(false)
145 {
146  NS_LOG_FUNCTION(this);
147  m_ssrc.fill(0);
148  m_slrc.fill(0);
149 }
150 
152 {
153  NS_LOG_FUNCTION(this);
154 }
155 
156 void
158 {
159  NS_LOG_FUNCTION(this);
160  Reset();
161 }
162 
163 void
165 {
166  NS_LOG_FUNCTION(this << phy);
167  // We need to track our PHY because it is the object that knows the
168  // full set of transmit rates that are supported. We need to know
169  // this in order to find the relevant mandatory rates when choosing a
170  // transmit rate for automatic control responses like
171  // acknowledgments.
172  m_wifiPhy = phy;
173 }
174 
175 void
177 {
178  NS_LOG_FUNCTION(this << mac);
179  // We need to track our MAC because it is the object that knows the
180  // full set of interframe spaces.
181  m_wifiMac = mac;
182 }
183 
184 int64_t
186 {
187  NS_LOG_FUNCTION(this << stream);
188  return 0;
189 }
190 
191 void
193 {
194  NS_LOG_FUNCTION(this << maxSsrc);
195  m_maxSsrc = maxSsrc;
196 }
197 
198 void
200 {
201  NS_LOG_FUNCTION(this << maxSlrc);
202  m_maxSlrc = maxSlrc;
203 }
204 
205 void
207 {
208  NS_LOG_FUNCTION(this << threshold);
209  m_rtsCtsThreshold = threshold;
210 }
211 
212 void
214 {
215  NS_LOG_FUNCTION(this << threshold);
216  DoSetFragmentationThreshold(threshold);
217 }
218 
219 void
221 {
222  NS_LOG_FUNCTION(this << enable);
223  m_shortPreambleEnabled = enable;
224 }
225 
226 void
228 {
229  NS_LOG_FUNCTION(this << enable);
230  m_shortSlotTimeEnabled = enable;
231 }
232 
233 bool
235 {
236  return m_shortSlotTimeEnabled;
237 }
238 
239 bool
241 {
242  return m_shortPreambleEnabled;
243 }
244 
245 bool
247 {
248  return bool(m_wifiPhy->GetDevice()->GetHtConfiguration());
249 }
250 
251 bool
253 {
254  return (m_wifiPhy->GetDevice()->GetVhtConfiguration() &&
256 }
257 
258 bool
260 {
261  return bool(m_wifiPhy->GetDevice()->GetHeConfiguration());
262 }
263 
264 bool
266 {
267  return bool(m_wifiPhy->GetDevice()->GetEhtConfiguration());
268 }
269 
270 bool
272 {
273  if (GetHtSupported())
274  {
276  NS_ASSERT(htConfiguration); // If HT is supported, we should have a HT configuration
277  // attached
278  return htConfiguration->GetLdpcSupported();
279  }
280  return false;
281 }
282 
283 bool
285 {
286  if (GetHtSupported())
287  {
289  NS_ASSERT(htConfiguration); // If HT is supported, we should have a HT configuration
290  // attached
291  if (htConfiguration->GetShortGuardIntervalSupported())
292  {
293  return true;
294  }
295  }
296  return false;
297 }
298 
299 uint16_t
301 {
302  uint16_t gi = 0;
303  if (GetHeSupported())
304  {
306  NS_ASSERT(heConfiguration); // If HE is supported, we should have a HE configuration
307  // attached
308  gi = static_cast<uint16_t>(heConfiguration->GetGuardInterval().GetNanoSeconds());
309  }
310  return gi;
311 }
312 
313 uint32_t
315 {
317 }
318 
319 void
321  bool isShortPreambleSupported)
322 {
323  NS_LOG_FUNCTION(this << address << isShortPreambleSupported);
324  NS_ASSERT(!address.IsGroup());
325  LookupState(address)->m_shortPreamble = isShortPreambleSupported;
326 }
327 
328 void
330  bool isShortSlotTimeSupported)
331 {
332  NS_LOG_FUNCTION(this << address << isShortSlotTimeSupported);
333  NS_ASSERT(!address.IsGroup());
334  LookupState(address)->m_shortSlotTime = isShortSlotTimeSupported;
335 }
336 
337 void
339 {
340  NS_LOG_FUNCTION(this << address << mode);
341  NS_ASSERT(!address.IsGroup());
342  auto state = LookupState(address);
343  for (const auto& i : state->m_operationalRateSet)
344  {
345  if (i == mode)
346  {
347  return; // already in
348  }
349  }
350  if ((mode.GetModulationClass() == WIFI_MOD_CLASS_DSSS) ||
352  {
353  state->m_dsssSupported = true;
354  }
355  else if (mode.GetModulationClass() == WIFI_MOD_CLASS_ERP_OFDM)
356  {
357  state->m_erpOfdmSupported = true;
358  }
359  else if (mode.GetModulationClass() == WIFI_MOD_CLASS_OFDM)
360  {
361  state->m_ofdmSupported = true;
362  }
363  state->m_operationalRateSet.push_back(mode);
364 }
365 
366 void
368 {
369  NS_LOG_FUNCTION(this << address);
370  NS_ASSERT(!address.IsGroup());
371  auto state = LookupState(address);
372  state->m_operationalRateSet.clear();
373  for (const auto& mode : m_wifiPhy->GetModeList())
374  {
375  state->m_operationalRateSet.push_back(mode);
376  if (mode.IsMandatory())
377  {
378  AddBasicMode(mode);
379  }
380  }
381 }
382 
383 void
385 {
386  NS_LOG_FUNCTION(this << address);
387  NS_ASSERT(!address.IsGroup());
388  auto state = LookupState(address);
389 
390  const auto& mcsList = m_wifiPhy->GetMcsList();
391  state->m_operationalMcsSet = WifiModeList(mcsList.begin(), mcsList.end());
392 }
393 
394 void
396 {
397  NS_LOG_FUNCTION(this << address);
398  NS_ASSERT(!address.IsGroup());
399  LookupState(address)->m_operationalMcsSet.clear();
400 }
401 
402 void
404 {
405  NS_LOG_FUNCTION(this << address << mcs);
406  NS_ASSERT(!address.IsGroup());
407  auto state = LookupState(address);
408  for (const auto& i : state->m_operationalMcsSet)
409  {
410  if (i == mcs)
411  {
412  return; // already in
413  }
414  }
415  state->m_operationalMcsSet.push_back(mcs);
416 }
417 
418 bool
420 {
421  return LookupState(address)->m_shortPreamble;
422 }
423 
424 bool
426 {
427  return LookupState(address)->m_shortSlotTime;
428 }
429 
430 bool
432 {
433  return LookupState(address)->m_qosSupported;
434 }
435 
436 bool
438 {
439  if (address.IsGroup())
440  {
441  return false;
442  }
444 }
445 
446 bool
448 {
449  if (address.IsGroup())
450  {
451  return true;
452  }
454 }
455 
456 bool
458 {
459  if (address.IsGroup())
460  {
461  return false;
462  }
464 }
465 
466 void
468 {
469  NS_ASSERT(!address.IsGroup());
471 }
472 
473 void
475 {
476  NS_ASSERT(!address.IsGroup());
478 }
479 
480 void
482 {
483  NS_ASSERT(!address.IsGroup());
485 }
486 
487 void
489 {
490  NS_ASSERT(!address.IsGroup());
492 }
493 
494 bool
496 {
497  if (address.IsGroup())
498  {
499  return false;
500  }
502 }
503 
504 void
506 {
507  NS_ASSERT(!address.IsGroup());
509 }
510 
511 uint16_t
513 {
514  std::shared_ptr<WifiRemoteStationState> state;
515  if (!remoteAddress.IsGroup() &&
517  {
518  return state->m_aid;
519  }
520  return SU_STA_ID;
521 }
522 
523 uint16_t
525 {
526  NS_LOG_FUNCTION(this << address << txVector);
527 
528  uint16_t staId = SU_STA_ID;
529 
530  if (txVector.IsMu())
531  {
532  if (m_wifiMac->GetTypeOfStation() == AP)
533  {
534  staId = GetAssociationId(address);
535  }
536  else if (m_wifiMac->GetTypeOfStation() == STA)
537  {
538  Ptr<StaWifiMac> staMac = StaticCast<StaWifiMac>(m_wifiMac);
539  if (staMac->IsAssociated())
540  {
541  staId = staMac->GetAssociationId();
542  }
543  }
544  }
545 
546  NS_LOG_DEBUG("Returning STAID = " << staId);
547  return staId;
548 }
549 
550 bool
552 {
553  return LookupState(address)->m_isInPsMode;
554 }
555 
556 void
558 {
559  LookupState(address)->m_isInPsMode = isInPsMode;
560 }
561 
562 std::optional<Mac48Address>
564 {
565  if (auto stateIt = m_states.find(address);
566  stateIt != m_states.end() && stateIt->second->m_mleCommonInfo)
567  {
568  return stateIt->second->m_mleCommonInfo->m_mldMacAddress;
569  }
570 
571  return std::nullopt;
572 }
573 
574 std::optional<Mac48Address>
576 {
577  auto stateIt = m_states.find(mldAddress);
578 
579  if (stateIt == m_states.end() || !stateIt->second->m_mleCommonInfo)
580  {
581  // MLD address not found
582  return std::nullopt;
583  }
584 
585  NS_ASSERT(stateIt->second->m_mleCommonInfo->m_mldMacAddress == mldAddress);
586  return stateIt->second->m_address;
587 }
588 
590 WifiRemoteStationManager::GetDataTxVector(const WifiMacHeader& header, uint16_t allowedWidth)
591 {
592  NS_LOG_FUNCTION(this << header << allowedWidth);
593  Mac48Address address = header.GetAddr1();
594  if (!header.IsMgt() && address.IsGroup())
595  {
596  WifiMode mode = GetNonUnicastMode();
597  WifiTxVector v;
598  v.SetMode(mode);
599  v.SetPreambleType(
602  v.SetChannelWidth(m_wifiPhy->GetTxBandwidth(mode, allowedWidth));
605  v.SetNss(1);
606  v.SetNess(0);
607  return v;
608  }
609  WifiTxVector txVector;
610  if (header.IsMgt())
611  {
612  // Use the lowest basic rate for management frames
613  WifiMode mgtMode;
614  if (GetNBasicModes() > 0)
615  {
616  mgtMode = GetBasicMode(0);
617  }
618  else
619  {
620  mgtMode = GetDefaultMode();
621  }
622  txVector.SetMode(mgtMode);
623  txVector.SetPreambleType(
626  uint16_t channelWidth = allowedWidth;
627  if (!header.GetAddr1().IsGroup())
628  {
629  if (uint16_t rxWidth = GetChannelWidthSupported(header.GetAddr1());
630  rxWidth < channelWidth)
631  {
632  channelWidth = rxWidth;
633  }
634  }
635 
636  txVector.SetChannelWidth(m_wifiPhy->GetTxBandwidth(mgtMode, channelWidth));
637  txVector.SetGuardInterval(
639  }
640  else
641  {
642  txVector = DoGetDataTxVector(Lookup(address), allowedWidth);
643  txVector.SetLdpc(txVector.GetMode().GetModulationClass() < WIFI_MOD_CLASS_HT
644  ? false
646  }
648  if (heConfiguration)
649  {
650  txVector.SetBssColor(heConfiguration->GetBssColor());
651  }
652  // If both the allowed width and the TXVECTOR channel width are integer multiple
653  // of 20 MHz, then the TXVECTOR channel width must not exceed the allowed width
654  NS_ASSERT_MSG((txVector.GetChannelWidth() % 20 != 0) || (allowedWidth % 20 != 0) ||
655  (txVector.GetChannelWidth() <= allowedWidth),
656  "TXVECTOR channel width (" << txVector.GetChannelWidth()
657  << " MHz) exceeds allowed width (" << allowedWidth
658  << " MHz)");
659  return txVector;
660 }
661 
664 {
665  WifiMode defaultMode = GetDefaultMode();
666  WifiPreamble defaultPreamble;
667  if (defaultMode.GetModulationClass() == WIFI_MOD_CLASS_EHT)
668  {
669  defaultPreamble = WIFI_PREAMBLE_EHT_MU;
670  }
671  else if (defaultMode.GetModulationClass() == WIFI_MOD_CLASS_HE)
672  {
673  defaultPreamble = WIFI_PREAMBLE_HE_SU;
674  }
675  else if (defaultMode.GetModulationClass() == WIFI_MOD_CLASS_VHT)
676  {
677  defaultPreamble = WIFI_PREAMBLE_VHT_SU;
678  }
679  else if (defaultMode.GetModulationClass() == WIFI_MOD_CLASS_HT)
680  {
681  defaultPreamble = WIFI_PREAMBLE_HT_MF;
682  }
683  else
684  {
685  defaultPreamble = WIFI_PREAMBLE_LONG;
686  }
687 
688  return WifiTxVector(defaultMode,
690  defaultPreamble,
693  1,
694  0,
695  m_wifiPhy->GetTxBandwidth(defaultMode),
696  false);
697 }
698 
701 {
702  NS_LOG_FUNCTION(this << address << allowedWidth);
703  WifiTxVector v;
704  if (address.IsGroup())
705  {
706  WifiMode mode = GetNonUnicastMode();
707  v.SetMode(mode);
708  v.SetPreambleType(
714  v.SetNss(1);
715  v.SetNess(0);
716  }
717  else
718  {
720  }
721  auto modulation = v.GetModulationClass();
722 
723  if (allowedWidth >= 40 &&
724  (modulation == WIFI_MOD_CLASS_DSSS || modulation == WIFI_MOD_CLASS_HR_DSSS))
725  {
726  // RTS must be sent in a non-HT duplicate PPDU because it must protect a frame being
727  // transmitted on at least 40 MHz. Change the modulation class to ERP-OFDM and the rate
728  // to 6 Mbps
730  modulation = v.GetModulationClass();
731  }
732  // do not set allowedWidth as the TX width if the modulation class is (HR-)DSSS (allowedWidth
733  // may be >= 40 MHz) or allowedWidth is 22 MHz (the selected modulation class may be OFDM)
734  if (modulation != WIFI_MOD_CLASS_DSSS && modulation != WIFI_MOD_CLASS_HR_DSSS &&
735  allowedWidth != 22)
736  {
737  v.SetChannelWidth(allowedWidth);
738  }
739 
740  return v;
741 }
742 
745 {
746  NS_ASSERT(!to.IsGroup());
747  WifiMode ctsMode = GetControlAnswerMode(rtsTxMode);
748  WifiTxVector v;
749  v.SetMode(ctsMode);
750  v.SetPreambleType(
754  uint16_t ctsTxGuardInterval =
756  v.SetGuardInterval(ctsTxGuardInterval);
757  v.SetNss(1);
758  return v;
759 }
760 
761 void
763 {
764  NS_LOG_FUNCTION(this << txVector);
765 
766  auto txMode = txVector.GetMode();
767  if (txMode.GetModulationClass() >= WIFI_MOD_CLASS_HT)
768  {
769  auto rate = txMode.GetDataRate(txVector);
770  if (rate >= 24e6)
771  {
772  rate = 24e6;
773  }
774  else if (rate >= 12e6)
775  {
776  rate = 12e6;
777  }
778  else
779  {
780  rate = 6e6;
781  }
784  {
785  txVector.SetMode(ErpOfdmPhy::GetErpOfdmRate(rate));
786  }
787  else
788  {
789  txVector.SetMode(OfdmPhy::GetOfdmRate(rate));
790  }
791  }
792 }
793 
796 {
797  NS_ASSERT(!to.IsGroup());
798  WifiMode ackMode = GetControlAnswerMode(dataTxVector.GetMode(GetStaId(to, dataTxVector)));
799  WifiTxVector v;
800  v.SetMode(ackMode);
801  v.SetPreambleType(
805  uint16_t ackTxGuardInterval =
807  v.SetGuardInterval(ackTxGuardInterval);
808  v.SetNss(1);
809  return v;
810 }
811 
814  const WifiTxVector& dataTxVector) const
815 {
816  NS_ASSERT(!to.IsGroup());
817  WifiMode blockAckMode = GetControlAnswerMode(dataTxVector.GetMode(GetStaId(to, dataTxVector)));
818  WifiTxVector v;
819  v.SetMode(blockAckMode);
820  v.SetPreambleType(
823  v.SetChannelWidth(m_wifiPhy->GetTxBandwidth(blockAckMode));
824  uint16_t blockAckTxGuardInterval =
826  v.SetGuardInterval(blockAckTxGuardInterval);
827  v.SetNss(1);
828  return v;
829 }
830 
831 WifiMode
833 {
848  NS_LOG_FUNCTION(this << reqMode);
849  WifiMode mode = GetDefaultMode();
850  bool found = false;
851  // First, search the BSS Basic Rate set
852  for (uint8_t i = 0; i < GetNBasicModes(); i++)
853  {
854  WifiMode testMode = GetBasicMode(i);
855  if ((!found || testMode.IsHigherDataRate(mode)) && (!testMode.IsHigherDataRate(reqMode)) &&
857  testMode.GetModulationClass())))
858  {
859  mode = testMode;
860  // We've found a potentially-suitable transmit rate, but we
861  // need to continue and consider all the basic rates before
862  // we can be sure we've got the right one.
863  found = true;
864  }
865  }
866  if (GetHtSupported())
867  {
868  if (!found)
869  {
870  mode = GetDefaultMcs();
871  for (uint8_t i = 0; i != GetNBasicMcs(); i++)
872  {
873  WifiMode testMode = GetBasicMcs(i);
874  if ((!found || testMode.IsHigherDataRate(mode)) &&
875  (!testMode.IsHigherDataRate(reqMode)) &&
876  (testMode.GetModulationClass() == reqMode.GetModulationClass()))
877  {
878  mode = testMode;
879  // We've found a potentially-suitable transmit rate, but we
880  // need to continue and consider all the basic rates before
881  // we can be sure we've got the right one.
882  found = true;
883  }
884  }
885  }
886  }
887  // If we found a suitable rate in the BSSBasicRateSet, then we are
888  // done and can return that mode.
889  if (found)
890  {
891  NS_LOG_DEBUG("WifiRemoteStationManager::GetControlAnswerMode returning " << mode);
892  return mode;
893  }
894 
912  for (const auto& thismode : m_wifiPhy->GetModeList())
913  {
914  /* If the rate:
915  *
916  * - is a mandatory rate for the PHY, and
917  * - is equal to or faster than our current best choice, and
918  * - is less than or equal to the rate of the received frame, and
919  * - is of the same modulation class as the received frame
920  *
921  * ...then it's our best choice so far.
922  */
923  if (thismode.IsMandatory() && (!found || thismode.IsHigherDataRate(mode)) &&
924  (!thismode.IsHigherDataRate(reqMode)) &&
926  thismode.GetModulationClass())))
927  {
928  mode = thismode;
929  // As above; we've found a potentially-suitable transmit
930  // rate, but we need to continue and consider all the
931  // mandatory rates before we can be sure we've got the right one.
932  found = true;
933  }
934  }
935  if (GetHtSupported())
936  {
937  for (const auto& thismode : m_wifiPhy->GetMcsList())
938  {
939  if (thismode.IsMandatory() && (!found || thismode.IsHigherDataRate(mode)) &&
940  (!thismode.IsHigherCodeRate(reqMode)) &&
941  (thismode.GetModulationClass() == reqMode.GetModulationClass()))
942  {
943  mode = thismode;
944  // As above; we've found a potentially-suitable transmit
945  // rate, but we need to continue and consider all the
946  // mandatory rates before we can be sure we've got the right one.
947  found = true;
948  }
949  }
950  }
951 
961  if (!found)
962  {
963  NS_FATAL_ERROR("Can't find response rate for " << reqMode);
964  }
965 
966  NS_LOG_DEBUG("WifiRemoteStationManager::GetControlAnswerMode returning " << mode);
967  return mode;
968 }
969 
970 void
972 {
973  NS_LOG_FUNCTION(this << header);
974  NS_ASSERT(!header.GetAddr1().IsGroup());
975  AcIndex ac = QosUtilsMapTidToAc((header.IsQosData()) ? header.GetQosTid() : 0);
976  m_ssrc[ac]++;
977  m_macTxRtsFailed(header.GetAddr1());
978  DoReportRtsFailed(Lookup(header.GetAddr1()));
979 }
980 
981 void
983 {
984  NS_LOG_FUNCTION(this << *mpdu);
985  NS_ASSERT(!mpdu->GetHeader().GetAddr1().IsGroup());
986  AcIndex ac =
987  QosUtilsMapTidToAc((mpdu->GetHeader().IsQosData()) ? mpdu->GetHeader().GetQosTid() : 0);
988  bool longMpdu = (mpdu->GetSize() > m_rtsCtsThreshold);
989  if (longMpdu)
990  {
991  m_slrc[ac]++;
992  }
993  else
994  {
995  m_ssrc[ac]++;
996  }
997  m_macTxDataFailed(mpdu->GetHeader().GetAddr1());
998  DoReportDataFailed(Lookup(mpdu->GetHeader().GetAddr1()));
999 }
1000 
1001 void
1003  double ctsSnr,
1004  WifiMode ctsMode,
1005  double rtsSnr)
1006 {
1007  NS_LOG_FUNCTION(this << header << ctsSnr << ctsMode << rtsSnr);
1008  NS_ASSERT(!header.GetAddr1().IsGroup());
1009  WifiRemoteStation* station = Lookup(header.GetAddr1());
1010  AcIndex ac = QosUtilsMapTidToAc((header.IsQosData()) ? header.GetQosTid() : 0);
1011  station->m_state->m_info.NotifyTxSuccess(m_ssrc[ac]);
1012  m_ssrc[ac] = 0;
1013  DoReportRtsOk(station, ctsSnr, ctsMode, rtsSnr);
1014 }
1015 
1016 void
1018  double ackSnr,
1019  WifiMode ackMode,
1020  double dataSnr,
1021  WifiTxVector dataTxVector)
1022 {
1023  NS_LOG_FUNCTION(this << *mpdu << ackSnr << ackMode << dataSnr << dataTxVector);
1024  const WifiMacHeader& hdr = mpdu->GetHeader();
1025  NS_ASSERT(!hdr.GetAddr1().IsGroup());
1026  WifiRemoteStation* station = Lookup(hdr.GetAddr1());
1027  AcIndex ac = QosUtilsMapTidToAc((hdr.IsQosData()) ? hdr.GetQosTid() : 0);
1028  bool longMpdu = (mpdu->GetSize() > m_rtsCtsThreshold);
1029  if (longMpdu)
1030  {
1031  station->m_state->m_info.NotifyTxSuccess(m_slrc[ac]);
1032  m_slrc[ac] = 0;
1033  }
1034  else
1035  {
1036  station->m_state->m_info.NotifyTxSuccess(m_ssrc[ac]);
1037  m_ssrc[ac] = 0;
1038  }
1039  DoReportDataOk(station,
1040  ackSnr,
1041  ackMode,
1042  dataSnr,
1043  dataTxVector.GetChannelWidth(),
1044  dataTxVector.GetNss(GetStaId(hdr.GetAddr1(), dataTxVector)));
1045 }
1046 
1047 void
1049 {
1050  NS_LOG_FUNCTION(this << header);
1051  NS_ASSERT(!header.GetAddr1().IsGroup());
1052  WifiRemoteStation* station = Lookup(header.GetAddr1());
1053  AcIndex ac = QosUtilsMapTidToAc((header.IsQosData()) ? header.GetQosTid() : 0);
1054  station->m_state->m_info.NotifyTxFailed();
1055  m_ssrc[ac] = 0;
1056  m_macTxFinalRtsFailed(header.GetAddr1());
1057  DoReportFinalRtsFailed(station);
1058 }
1059 
1060 void
1062 {
1063  NS_LOG_FUNCTION(this << *mpdu);
1064  NS_ASSERT(!mpdu->GetHeader().GetAddr1().IsGroup());
1065  WifiRemoteStation* station = Lookup(mpdu->GetHeader().GetAddr1());
1066  AcIndex ac =
1067  QosUtilsMapTidToAc((mpdu->GetHeader().IsQosData()) ? mpdu->GetHeader().GetQosTid() : 0);
1068  station->m_state->m_info.NotifyTxFailed();
1069  bool longMpdu = (mpdu->GetSize() > m_rtsCtsThreshold);
1070  if (longMpdu)
1071  {
1072  m_slrc[ac] = 0;
1073  }
1074  else
1075  {
1076  m_ssrc[ac] = 0;
1077  }
1078  m_macTxFinalDataFailed(mpdu->GetHeader().GetAddr1());
1079  DoReportFinalDataFailed(station);
1080 }
1081 
1082 void
1084  RxSignalInfo rxSignalInfo,
1085  WifiTxVector txVector)
1086 {
1087  NS_LOG_FUNCTION(this << address << rxSignalInfo << txVector);
1088  if (address.IsGroup())
1089  {
1090  return;
1091  }
1092  WifiRemoteStation* station = Lookup(address);
1093  DoReportRxOk(station, rxSignalInfo.snr, txVector.GetMode(GetStaId(address, txVector)));
1094  station->m_rssiAndUpdateTimePair = std::make_pair(rxSignalInfo.rssi, Simulator::Now());
1095 }
1096 
1097 void
1099  uint16_t nSuccessfulMpdus,
1100  uint16_t nFailedMpdus,
1101  double rxSnr,
1102  double dataSnr,
1103  WifiTxVector dataTxVector)
1104 {
1105  NS_LOG_FUNCTION(this << address << nSuccessfulMpdus << nFailedMpdus << rxSnr << dataSnr
1106  << dataTxVector);
1107  NS_ASSERT(!address.IsGroup());
1108  for (uint16_t i = 0; i < nFailedMpdus; i++)
1109  {
1111  }
1113  nSuccessfulMpdus,
1114  nFailedMpdus,
1115  rxSnr,
1116  dataSnr,
1117  dataTxVector.GetChannelWidth(),
1118  dataTxVector.GetNss(GetStaId(address, dataTxVector)));
1119 }
1120 
1121 bool
1123 {
1124  NS_LOG_FUNCTION(this << header << size);
1125  Mac48Address address = header.GetAddr1();
1126  WifiTxVector txVector = GetDataTxVector(header, m_wifiPhy->GetChannelWidth());
1127  const auto modulationClass = txVector.GetModulationClass();
1128  if (address.IsGroup())
1129  {
1130  return false;
1131  }
1132  if (m_erpProtectionMode == RTS_CTS &&
1133  ((modulationClass == WIFI_MOD_CLASS_ERP_OFDM) || (modulationClass == WIFI_MOD_CLASS_HT) ||
1134  (modulationClass == WIFI_MOD_CLASS_VHT) || (modulationClass == WIFI_MOD_CLASS_HE) ||
1135  (modulationClass == WIFI_MOD_CLASS_EHT)) &&
1137  {
1138  NS_LOG_DEBUG(
1139  "WifiRemoteStationManager::NeedRTS returning true to protect non-ERP stations");
1140  return true;
1141  }
1142  else if (m_htProtectionMode == RTS_CTS &&
1143  ((modulationClass == WIFI_MOD_CLASS_HT) || (modulationClass == WIFI_MOD_CLASS_VHT)) &&
1145  {
1146  NS_LOG_DEBUG("WifiRemoteStationManager::NeedRTS returning true to protect non-HT stations");
1147  return true;
1148  }
1149  bool normally = (size > m_rtsCtsThreshold);
1150  return DoNeedRts(Lookup(address), size, normally);
1151 }
1152 
1153 bool
1155 {
1156  WifiMode mode = txVector.GetMode();
1157  NS_LOG_FUNCTION(this << mode);
1160  (mode.GetModulationClass() == WIFI_MOD_CLASS_HT) ||
1161  (mode.GetModulationClass() == WIFI_MOD_CLASS_VHT) ||
1162  (mode.GetModulationClass() == WIFI_MOD_CLASS_HE) ||
1163  (mode.GetModulationClass() == WIFI_MOD_CLASS_EHT)) &&
1165  {
1166  NS_LOG_DEBUG(
1167  "WifiRemoteStationManager::NeedCtsToSelf returning true to protect non-ERP stations");
1168  return true;
1169  }
1170  else if (m_htProtectionMode == CTS_TO_SELF &&
1171  ((mode.GetModulationClass() == WIFI_MOD_CLASS_HT) ||
1172  (mode.GetModulationClass() == WIFI_MOD_CLASS_VHT)) &&
1174  {
1175  NS_LOG_DEBUG(
1176  "WifiRemoteStationManager::NeedCtsToSelf returning true to protect non-HT stations");
1177  return true;
1178  }
1179  else if (!m_useNonErpProtection)
1180  {
1181  // search for the BSS Basic Rate set, if the used mode is in the basic set then there is no
1182  // need for CTS To Self
1183  for (auto i = m_bssBasicRateSet.begin(); i != m_bssBasicRateSet.end(); i++)
1184  {
1185  if (mode == *i)
1186  {
1187  NS_LOG_DEBUG("WifiRemoteStationManager::NeedCtsToSelf returning false");
1188  return false;
1189  }
1190  }
1191  if (GetHtSupported())
1192  {
1193  // search for the BSS Basic MCS set, if the used mode is in the basic set then there is
1194  // no need for CTS To Self
1195  for (auto i = m_bssBasicMcsSet.begin(); i != m_bssBasicMcsSet.end(); i++)
1196  {
1197  if (mode == *i)
1198  {
1199  NS_LOG_DEBUG("WifiRemoteStationManager::NeedCtsToSelf returning false");
1200  return false;
1201  }
1202  }
1203  }
1204  NS_LOG_DEBUG("WifiRemoteStationManager::NeedCtsToSelf returning true");
1205  return true;
1206  }
1207  return false;
1208 }
1209 
1210 void
1212 {
1213  NS_LOG_FUNCTION(this << enable);
1214  m_useNonErpProtection = enable;
1215 }
1216 
1217 bool
1219 {
1220  return m_useNonErpProtection;
1221 }
1222 
1223 void
1225 {
1226  NS_LOG_FUNCTION(this << enable);
1227  m_useNonHtProtection = enable;
1228 }
1229 
1230 bool
1232 {
1233  return m_useNonHtProtection;
1234 }
1235 
1236 bool
1238 {
1239  NS_LOG_FUNCTION(this << *mpdu);
1240  NS_ASSERT(!mpdu->GetHeader().GetAddr1().IsGroup());
1241  AcIndex ac =
1242  QosUtilsMapTidToAc((mpdu->GetHeader().IsQosData()) ? mpdu->GetHeader().GetQosTid() : 0);
1243  bool longMpdu = (mpdu->GetSize() > m_rtsCtsThreshold);
1244  uint32_t retryCount;
1245  uint32_t maxRetryCount;
1246  if (longMpdu)
1247  {
1248  retryCount = m_slrc[ac];
1249  maxRetryCount = m_maxSlrc;
1250  }
1251  else
1252  {
1253  retryCount = m_ssrc[ac];
1254  maxRetryCount = m_maxSsrc;
1255  }
1256  bool normally = retryCount < maxRetryCount;
1257  NS_LOG_DEBUG("WifiRemoteStationManager::NeedRetransmission count: "
1258  << retryCount << " result: " << std::boolalpha << normally);
1259  return DoNeedRetransmission(Lookup(mpdu->GetHeader().GetAddr1()), mpdu->GetPacket(), normally);
1260 }
1261 
1262 bool
1264 {
1265  NS_LOG_FUNCTION(this << *mpdu);
1266  if (mpdu->GetHeader().GetAddr1().IsGroup())
1267  {
1268  return false;
1269  }
1270  bool normally = mpdu->GetSize() > GetFragmentationThreshold();
1271  NS_LOG_DEBUG("WifiRemoteStationManager::NeedFragmentation result: " << std::boolalpha
1272  << normally);
1273  return DoNeedFragmentation(Lookup(mpdu->GetHeader().GetAddr1()), mpdu->GetPacket(), normally);
1274 }
1275 
1276 void
1278 {
1279  NS_LOG_FUNCTION(this << threshold);
1280  if (threshold < 256)
1281  {
1282  /*
1283  * ASN.1 encoding of the MAC and PHY MIB (256 ... 8000)
1284  */
1285  NS_LOG_WARN("Fragmentation threshold should be larger than 256. Setting to 256.");
1287  }
1288  else
1289  {
1290  /*
1291  * The length of each fragment shall be an even number of octets, except for the last
1292  * fragment if an MSDU or MMPDU, which may be either an even or an odd number of octets.
1293  */
1294  if (threshold % 2 != 0)
1295  {
1296  NS_LOG_WARN("Fragmentation threshold should be an even number. Setting to "
1297  << threshold - 1);
1298  m_fragmentationThreshold = threshold - 1;
1299  }
1300  else
1301  {
1302  m_fragmentationThreshold = threshold;
1303  }
1304  }
1305 }
1306 
1307 uint32_t
1309 {
1310  return m_fragmentationThreshold;
1311 }
1312 
1313 uint32_t
1315 {
1316  NS_LOG_FUNCTION(this << *mpdu);
1317  // The number of bytes a fragment can support is (Threshold - WIFI_HEADER_SIZE - WIFI_FCS).
1318  uint32_t nFragments =
1319  (mpdu->GetPacket()->GetSize() /
1320  (GetFragmentationThreshold() - mpdu->GetHeader().GetSize() - WIFI_MAC_FCS_LENGTH));
1321 
1322  // If the size of the last fragment is not 0.
1323  if ((mpdu->GetPacket()->GetSize() %
1324  (GetFragmentationThreshold() - mpdu->GetHeader().GetSize() - WIFI_MAC_FCS_LENGTH)) > 0)
1325  {
1326  nFragments++;
1327  }
1328  NS_LOG_DEBUG("WifiRemoteStationManager::GetNFragments returning " << nFragments);
1329  return nFragments;
1330 }
1331 
1332 uint32_t
1334 {
1335  NS_LOG_FUNCTION(this << *mpdu << fragmentNumber);
1336  NS_ASSERT(!mpdu->GetHeader().GetAddr1().IsGroup());
1337  uint32_t nFragment = GetNFragments(mpdu);
1338  if (fragmentNumber >= nFragment)
1339  {
1340  NS_LOG_DEBUG("WifiRemoteStationManager::GetFragmentSize returning 0");
1341  return 0;
1342  }
1343  // Last fragment
1344  if (fragmentNumber == nFragment - 1)
1345  {
1346  uint32_t lastFragmentSize =
1347  mpdu->GetPacket()->GetSize() -
1348  (fragmentNumber *
1349  (GetFragmentationThreshold() - mpdu->GetHeader().GetSize() - WIFI_MAC_FCS_LENGTH));
1350  NS_LOG_DEBUG("WifiRemoteStationManager::GetFragmentSize returning " << lastFragmentSize);
1351  return lastFragmentSize;
1352  }
1353  // All fragments but the last, the number of bytes is (Threshold - WIFI_HEADER_SIZE - WIFI_FCS).
1354  else
1355  {
1356  uint32_t fragmentSize =
1357  GetFragmentationThreshold() - mpdu->GetHeader().GetSize() - WIFI_MAC_FCS_LENGTH;
1358  NS_LOG_DEBUG("WifiRemoteStationManager::GetFragmentSize returning " << fragmentSize);
1359  return fragmentSize;
1360  }
1361 }
1362 
1363 uint32_t
1365 {
1366  NS_LOG_FUNCTION(this << *mpdu << fragmentNumber);
1367  NS_ASSERT(!mpdu->GetHeader().GetAddr1().IsGroup());
1368  NS_ASSERT(fragmentNumber < GetNFragments(mpdu));
1369  uint32_t fragmentOffset = fragmentNumber * (GetFragmentationThreshold() -
1370  mpdu->GetHeader().GetSize() - WIFI_MAC_FCS_LENGTH);
1371  NS_LOG_DEBUG("WifiRemoteStationManager::GetFragmentOffset returning " << fragmentOffset);
1372  return fragmentOffset;
1373 }
1374 
1375 bool
1377 {
1378  NS_LOG_FUNCTION(this << *mpdu << fragmentNumber);
1379  NS_ASSERT(!mpdu->GetHeader().GetAddr1().IsGroup());
1380  bool isLast = fragmentNumber == (GetNFragments(mpdu) - 1);
1381  NS_LOG_DEBUG("WifiRemoteStationManager::IsLastFragment returning " << std::boolalpha << isLast);
1382  return isLast;
1383 }
1384 
1385 uint8_t
1387 {
1388  return m_defaultTxPowerLevel;
1389 }
1390 
1393 {
1394  return LookupState(address)->m_info;
1395 }
1396 
1397 std::optional<double>
1399 {
1400  auto station = Lookup(address);
1401  auto rssi = station->m_rssiAndUpdateTimePair.first;
1402  auto ts = station->m_rssiAndUpdateTimePair.second;
1403  if (ts.IsStrictlyPositive())
1404  {
1405  return rssi;
1406  }
1407  return std::nullopt;
1408 }
1409 
1410 std::shared_ptr<WifiRemoteStationState>
1412 {
1413  NS_LOG_FUNCTION(this << address);
1414  auto stateIt = m_states.find(address);
1415 
1416  if (stateIt != m_states.end())
1417  {
1418  NS_LOG_DEBUG("WifiRemoteStationManager::LookupState returning existing state");
1419  return stateIt->second;
1420  }
1421 
1422  auto state = std::make_shared<WifiRemoteStationState>();
1423  state->m_state = WifiRemoteStationState::BRAND_NEW;
1424  state->m_address = address;
1425  state->m_aid = 0;
1426  state->m_operationalRateSet.push_back(GetDefaultMode());
1427  state->m_operationalMcsSet.push_back(GetDefaultMcs());
1428  state->m_dsssSupported = false;
1429  state->m_erpOfdmSupported = false;
1430  state->m_ofdmSupported = false;
1431  state->m_htCapabilities = nullptr;
1432  state->m_vhtCapabilities = nullptr;
1433  state->m_heCapabilities = nullptr;
1434  state->m_ehtCapabilities = nullptr;
1435  state->m_mleCommonInfo = nullptr;
1436  state->m_emlsrEnabled = false;
1437  state->m_channelWidth = m_wifiPhy->GetChannelWidth();
1438  state->m_guardInterval = GetGuardInterval();
1439  state->m_ness = 0;
1440  state->m_aggregation = false;
1441  state->m_qosSupported = false;
1442  state->m_isInPsMode = false;
1443  const_cast<WifiRemoteStationManager*>(this)->m_states.insert({address, state});
1444  NS_LOG_DEBUG("WifiRemoteStationManager::LookupState returning new state");
1445  return state;
1446 }
1447 
1448 WifiRemoteStation*
1449 WifiRemoteStationManager::Lookup(Mac48Address address) const
1450 {
1451  NS_LOG_FUNCTION(this << address);
1452  NS_ASSERT(!address.IsGroup());
1453  NS_ASSERT(address != m_wifiMac->GetAddress());
1454  auto stationIt = m_stations.find(address);
1455 
1456  if (stationIt != m_stations.end())
1457  {
1458  return stationIt->second;
1459  }
1460 
1461  WifiRemoteStation* station = DoCreateStation();
1462  station->m_state = LookupState(address).get();
1463  station->m_rssiAndUpdateTimePair = std::make_pair(0, Seconds(0));
1464  const_cast<WifiRemoteStationManager*>(this)->m_stations.insert({address, station});
1465  return station;
1466 }
1467 
1468 void
1469 WifiRemoteStationManager::SetAssociationId(Mac48Address remoteAddress, uint16_t aid)
1470 {
1471  NS_LOG_FUNCTION(this << remoteAddress << aid);
1472  LookupState(remoteAddress)->m_aid = aid;
1473 }
1474 
1475 void
1476 WifiRemoteStationManager::SetQosSupport(Mac48Address from, bool qosSupported)
1477 {
1478  NS_LOG_FUNCTION(this << from << qosSupported);
1479  LookupState(from)->m_qosSupported = qosSupported;
1480 }
1481 
1482 void
1483 WifiRemoteStationManager::SetEmlsrEnabled(const Mac48Address& from, bool emlsrEnabled)
1484 {
1485  NS_LOG_FUNCTION(this << from << emlsrEnabled);
1486  LookupState(from)->m_emlsrEnabled = emlsrEnabled;
1487 }
1488 
1489 void
1490 WifiRemoteStationManager::AddStationHtCapabilities(Mac48Address from, HtCapabilities htCapabilities)
1491 {
1492  // Used by all stations to record HT capabilities of remote stations
1493  NS_LOG_FUNCTION(this << from << htCapabilities);
1494  auto state = LookupState(from);
1495  if (htCapabilities.GetSupportedChannelWidth() == 1)
1496  {
1497  state->m_channelWidth = 40;
1498  }
1499  else
1500  {
1501  state->m_channelWidth = 20;
1502  }
1503  SetQosSupport(from, true);
1504  for (const auto& mcs : m_wifiPhy->GetMcsList(WIFI_MOD_CLASS_HT))
1505  {
1506  if (htCapabilities.IsSupportedMcs(mcs.GetMcsValue()))
1507  {
1508  AddSupportedMcs(from, mcs);
1509  }
1510  }
1511  state->m_htCapabilities = Create<const HtCapabilities>(htCapabilities);
1512 }
1513 
1514 void
1515 WifiRemoteStationManager::AddStationVhtCapabilities(Mac48Address from,
1516  VhtCapabilities vhtCapabilities)
1517 {
1518  // Used by all stations to record VHT capabilities of remote stations
1519  NS_LOG_FUNCTION(this << from << vhtCapabilities);
1520  auto state = LookupState(from);
1521  if (vhtCapabilities.GetSupportedChannelWidthSet() == 1)
1522  {
1523  state->m_channelWidth = 160;
1524  }
1525  else
1526  {
1527  state->m_channelWidth = 80;
1528  }
1529  for (uint8_t i = 1; i <= m_wifiPhy->GetMaxSupportedTxSpatialStreams(); i++)
1530  {
1531  for (const auto& mcs : m_wifiPhy->GetMcsList(WIFI_MOD_CLASS_VHT))
1532  {
1533  if (vhtCapabilities.IsSupportedMcs(mcs.GetMcsValue(), i))
1534  {
1535  AddSupportedMcs(from, mcs);
1536  }
1537  }
1538  }
1539  state->m_vhtCapabilities = Create<const VhtCapabilities>(vhtCapabilities);
1540 }
1541 
1542 void
1543 WifiRemoteStationManager::AddStationHeCapabilities(Mac48Address from, HeCapabilities heCapabilities)
1544 {
1545  // Used by all stations to record HE capabilities of remote stations
1546  NS_LOG_FUNCTION(this << from << heCapabilities);
1547  auto state = LookupState(from);
1548  if ((m_wifiPhy->GetPhyBand() == WIFI_PHY_BAND_5GHZ) ||
1549  (m_wifiPhy->GetPhyBand() == WIFI_PHY_BAND_6GHZ))
1550  {
1551  if (heCapabilities.GetChannelWidthSet() & 0x04)
1552  {
1553  state->m_channelWidth = 160;
1554  }
1555  else if (heCapabilities.GetChannelWidthSet() & 0x02)
1556  {
1557  state->m_channelWidth = 80;
1558  }
1559  // For other cases at 5 GHz, the supported channel width is set by the VHT capabilities
1560  }
1561  else if (m_wifiPhy->GetPhyBand() == WIFI_PHY_BAND_2_4GHZ)
1562  {
1563  if (heCapabilities.GetChannelWidthSet() & 0x01)
1564  {
1565  state->m_channelWidth = 40;
1566  }
1567  else
1568  {
1569  state->m_channelWidth = 20;
1570  }
1571  }
1572  if (heCapabilities.GetHeSuPpdu1xHeLtf800nsGi())
1573  {
1574  state->m_guardInterval = 800;
1575  }
1576  else
1577  {
1578  // todo: Using 3200ns, default value for HeConfiguration::GuardInterval
1579  state->m_guardInterval = 3200;
1580  }
1581  for (const auto& mcs : m_wifiPhy->GetMcsList(WIFI_MOD_CLASS_HE))
1582  {
1583  if (heCapabilities.GetHighestMcsSupported() >= mcs.GetMcsValue())
1584  {
1585  AddSupportedMcs(from, mcs);
1586  }
1587  }
1588  state->m_heCapabilities = Create<const HeCapabilities>(heCapabilities);
1589  SetQosSupport(from, true);
1590 }
1591 
1592 void
1593 WifiRemoteStationManager::AddStationEhtCapabilities(Mac48Address from,
1594  EhtCapabilities ehtCapabilities)
1595 {
1596  // Used by all stations to record EHT capabilities of remote stations
1597  NS_LOG_FUNCTION(this << from << ehtCapabilities);
1598  auto state = LookupState(from);
1599  for (const auto& mcs : m_wifiPhy->GetMcsList(WIFI_MOD_CLASS_EHT))
1600  {
1601  for (uint8_t mapType = 0; mapType < EhtMcsAndNssSet::EHT_MCS_MAP_TYPE_MAX; ++mapType)
1602  {
1603  if (ehtCapabilities.GetHighestSupportedRxMcs(
1604  static_cast<EhtMcsAndNssSet::EhtMcsMapType>(mapType)) >= mcs.GetMcsValue())
1605  {
1606  AddSupportedMcs(from, mcs);
1607  }
1608  }
1609  }
1610  state->m_ehtCapabilities = Create<const EhtCapabilities>(ehtCapabilities);
1611  SetQosSupport(from, true);
1612 }
1613 
1614 void
1615 WifiRemoteStationManager::AddStationMleCommonInfo(
1616  Mac48Address from,
1617  const std::shared_ptr<CommonInfoBasicMle>& mleCommonInfo)
1618 {
1619  NS_LOG_FUNCTION(this << from);
1620  auto state = LookupState(from);
1621  state->m_mleCommonInfo = mleCommonInfo;
1622  // insert another entry in m_states indexed by the MLD address and pointing to the same state
1623  const_cast<WifiRemoteStationManager*>(this)->m_states.insert(
1624  {mleCommonInfo->m_mldMacAddress, state});
1625 }
1626 
1627 Ptr<const HtCapabilities>
1628 WifiRemoteStationManager::GetStationHtCapabilities(Mac48Address from)
1629 {
1630  return LookupState(from)->m_htCapabilities;
1631 }
1632 
1634 WifiRemoteStationManager::GetStationVhtCapabilities(Mac48Address from)
1635 {
1636  return LookupState(from)->m_vhtCapabilities;
1637 }
1638 
1640 WifiRemoteStationManager::GetStationHeCapabilities(Mac48Address from)
1641 {
1642  return LookupState(from)->m_heCapabilities;
1643 }
1644 
1646 WifiRemoteStationManager::GetStationEhtCapabilities(Mac48Address from)
1647 {
1648  return LookupState(from)->m_ehtCapabilities;
1649 }
1650 
1651 std::optional<std::reference_wrapper<CommonInfoBasicMle::EmlCapabilities>>
1652 WifiRemoteStationManager::GetStationEmlCapabilities(const Mac48Address& from)
1653 {
1654  if (auto state = LookupState(from);
1655  state->m_mleCommonInfo && state->m_mleCommonInfo->m_emlCapabilities)
1656  {
1657  return state->m_mleCommonInfo->m_emlCapabilities.value();
1658  }
1659  return std::nullopt;
1660 }
1661 
1662 std::optional<std::reference_wrapper<CommonInfoBasicMle::MldCapabilities>>
1663 WifiRemoteStationManager::GetStationMldCapabilities(const Mac48Address& from)
1664 {
1665  if (auto state = LookupState(from);
1666  state->m_mleCommonInfo && state->m_mleCommonInfo->m_mldCapabilities)
1667  {
1668  return state->m_mleCommonInfo->m_mldCapabilities.value();
1669  }
1670  return std::nullopt;
1671 }
1672 
1673 bool
1674 WifiRemoteStationManager::GetLdpcSupported(Mac48Address address) const
1675 {
1676  Ptr<const HtCapabilities> htCapabilities = LookupState(address)->m_htCapabilities;
1677  Ptr<const VhtCapabilities> vhtCapabilities = LookupState(address)->m_vhtCapabilities;
1678  Ptr<const HeCapabilities> heCapabilities = LookupState(address)->m_heCapabilities;
1679  bool supported = false;
1680  if (htCapabilities)
1681  {
1682  supported |= htCapabilities->GetLdpc();
1683  }
1684  if (vhtCapabilities)
1685  {
1686  supported |= vhtCapabilities->GetRxLdpc();
1687  }
1688  if (heCapabilities)
1689  {
1690  supported |= heCapabilities->GetLdpcCodingInPayload();
1691  }
1692  return supported;
1693 }
1694 
1695 WifiMode
1696 WifiRemoteStationManager::GetDefaultMode() const
1697 {
1698  NS_ASSERT(m_wifiPhy);
1699  auto defaultTxMode = m_wifiPhy->GetDefaultMode();
1700  NS_ASSERT(defaultTxMode.IsMandatory());
1701  return defaultTxMode;
1702 }
1703 
1704 WifiMode
1705 WifiRemoteStationManager::GetDefaultMcs() const
1706 {
1707  return HtPhy::GetHtMcs0();
1708 }
1709 
1710 WifiMode
1711 WifiRemoteStationManager::GetDefaultModeForSta(const WifiRemoteStation* st) const
1712 {
1713  NS_LOG_FUNCTION(this << st);
1714 
1715  if (!GetHtSupported() || !GetHtSupported(st))
1716  {
1717  return GetDefaultMode();
1718  }
1719 
1720  // find the highest modulation class supported by both stations
1722  if (GetHeSupported() && GetHeSupported(st))
1723  {
1724  modClass = WIFI_MOD_CLASS_HE;
1725  }
1726  else if (GetVhtSupported() && GetVhtSupported(st))
1727  {
1728  modClass = WIFI_MOD_CLASS_VHT;
1729  }
1730 
1731  // return the MCS with lowest index
1732  return *m_wifiPhy->GetPhyEntity(modClass)->begin();
1733 }
1734 
1735 void
1737 {
1738  NS_LOG_FUNCTION(this);
1739  m_states.clear();
1740  for (auto& state : m_stations)
1741  {
1742  delete (state.second);
1743  }
1744  m_stations.clear();
1745  m_bssBasicRateSet.clear();
1746  m_bssBasicMcsSet.clear();
1747  m_ssrc.fill(0);
1748  m_slrc.fill(0);
1749 }
1750 
1751 void
1752 WifiRemoteStationManager::AddBasicMode(WifiMode mode)
1753 {
1754  NS_LOG_FUNCTION(this << mode);
1755  if (mode.GetModulationClass() >= WIFI_MOD_CLASS_HT)
1756  {
1757  NS_FATAL_ERROR("It is not allowed to add a HT rate in the BSSBasicRateSet!");
1758  }
1759  for (uint8_t i = 0; i < GetNBasicModes(); i++)
1760  {
1761  if (GetBasicMode(i) == mode)
1762  {
1763  return;
1764  }
1765  }
1766  m_bssBasicRateSet.push_back(mode);
1767 }
1768 
1769 uint8_t
1770 WifiRemoteStationManager::GetNBasicModes() const
1771 {
1772  return static_cast<uint8_t>(m_bssBasicRateSet.size());
1773 }
1774 
1775 WifiMode
1776 WifiRemoteStationManager::GetBasicMode(uint8_t i) const
1777 {
1778  NS_ASSERT(i < GetNBasicModes());
1779  return m_bssBasicRateSet[i];
1780 }
1781 
1782 uint32_t
1783 WifiRemoteStationManager::GetNNonErpBasicModes() const
1784 {
1785  uint32_t size = 0;
1786  for (auto i = m_bssBasicRateSet.begin(); i != m_bssBasicRateSet.end(); i++)
1787  {
1788  if (i->GetModulationClass() == WIFI_MOD_CLASS_ERP_OFDM)
1789  {
1790  continue;
1791  }
1792  size++;
1793  }
1794  return size;
1795 }
1796 
1797 WifiMode
1798 WifiRemoteStationManager::GetNonErpBasicMode(uint8_t i) const
1799 {
1800  NS_ASSERT(i < GetNNonErpBasicModes());
1801  uint32_t index = 0;
1802  bool found = false;
1803  for (auto j = m_bssBasicRateSet.begin(); j != m_bssBasicRateSet.end();)
1804  {
1805  if (i == index)
1806  {
1807  found = true;
1808  }
1809  if (j->GetModulationClass() != WIFI_MOD_CLASS_ERP_OFDM)
1810  {
1811  if (found)
1812  {
1813  break;
1814  }
1815  }
1816  index++;
1817  j++;
1818  }
1819  return m_bssBasicRateSet[index];
1820 }
1821 
1822 void
1823 WifiRemoteStationManager::AddBasicMcs(WifiMode mcs)
1824 {
1825  NS_LOG_FUNCTION(this << +mcs.GetMcsValue());
1826  for (uint8_t i = 0; i < GetNBasicMcs(); i++)
1827  {
1828  if (GetBasicMcs(i) == mcs)
1829  {
1830  return;
1831  }
1832  }
1833  m_bssBasicMcsSet.push_back(mcs);
1834 }
1835 
1836 uint8_t
1837 WifiRemoteStationManager::GetNBasicMcs() const
1838 {
1839  return static_cast<uint8_t>(m_bssBasicMcsSet.size());
1840 }
1841 
1842 WifiMode
1843 WifiRemoteStationManager::GetBasicMcs(uint8_t i) const
1844 {
1845  NS_ASSERT(i < GetNBasicMcs());
1846  return m_bssBasicMcsSet[i];
1847 }
1848 
1849 WifiMode
1850 WifiRemoteStationManager::GetNonUnicastMode() const
1851 {
1852  if (m_nonUnicastMode == WifiMode())
1853  {
1854  if (GetNBasicModes() > 0)
1855  {
1856  return GetBasicMode(0);
1857  }
1858  else
1859  {
1860  return GetDefaultMode();
1861  }
1862  }
1863  else
1864  {
1865  return m_nonUnicastMode;
1866  }
1867 }
1868 
1869 bool
1870 WifiRemoteStationManager::DoNeedRts(WifiRemoteStation* station, uint32_t size, bool normally)
1871 {
1872  return normally;
1873 }
1874 
1875 bool
1876 WifiRemoteStationManager::DoNeedRetransmission(WifiRemoteStation* station,
1877  Ptr<const Packet> packet,
1878  bool normally)
1879 {
1880  return normally;
1881 }
1882 
1883 bool
1884 WifiRemoteStationManager::DoNeedFragmentation(WifiRemoteStation* station,
1885  Ptr<const Packet> packet,
1886  bool normally)
1887 {
1888  return normally;
1889 }
1890 
1891 void
1892 WifiRemoteStationManager::DoReportAmpduTxStatus(WifiRemoteStation* station,
1893  uint16_t nSuccessfulMpdus,
1894  uint16_t nFailedMpdus,
1895  double rxSnr,
1896  double dataSnr,
1897  uint16_t dataChannelWidth,
1898  uint8_t dataNss)
1899 {
1900  NS_LOG_DEBUG("DoReportAmpduTxStatus received but the manager does not handle A-MPDUs!");
1901 }
1902 
1903 WifiMode
1904 WifiRemoteStationManager::GetSupported(const WifiRemoteStation* station, uint8_t i) const
1905 {
1906  NS_ASSERT(i < GetNSupported(station));
1907  return station->m_state->m_operationalRateSet[i];
1908 }
1909 
1910 WifiMode
1911 WifiRemoteStationManager::GetMcsSupported(const WifiRemoteStation* station, uint8_t i) const
1912 {
1913  NS_ASSERT(i < GetNMcsSupported(station));
1914  return station->m_state->m_operationalMcsSet[i];
1915 }
1916 
1917 WifiMode
1918 WifiRemoteStationManager::GetNonErpSupported(const WifiRemoteStation* station, uint8_t i) const
1919 {
1920  NS_ASSERT(i < GetNNonErpSupported(station));
1921  // IEEE 802.11g standard defines that if the protection mechanism is enabled, RTS, CTS and
1922  // CTS-To-Self frames should select a rate in the BSSBasicRateSet that corresponds to an 802.11b
1923  // basic rate. This is a implemented here to avoid changes in every RAA, but should maybe be
1924  // moved in case it breaks standard rules.
1925  uint32_t index = 0;
1926  bool found = false;
1927  for (auto j = station->m_state->m_operationalRateSet.begin();
1928  j != station->m_state->m_operationalRateSet.end();)
1929  {
1930  if (i == index)
1931  {
1932  found = true;
1933  }
1934  if (j->GetModulationClass() != WIFI_MOD_CLASS_ERP_OFDM)
1935  {
1936  if (found)
1937  {
1938  break;
1939  }
1940  }
1941  index++;
1942  j++;
1943  }
1944  return station->m_state->m_operationalRateSet[index];
1945 }
1946 
1948 WifiRemoteStationManager::GetAddress(const WifiRemoteStation* station) const
1949 {
1950  return station->m_state->m_address;
1951 }
1952 
1953 uint16_t
1954 WifiRemoteStationManager::GetChannelWidth(const WifiRemoteStation* station) const
1955 {
1956  return station->m_state->m_channelWidth;
1957 }
1958 
1959 bool
1960 WifiRemoteStationManager::GetShortGuardIntervalSupported(const WifiRemoteStation* station) const
1961 {
1962  Ptr<const HtCapabilities> htCapabilities = station->m_state->m_htCapabilities;
1963 
1964  if (!htCapabilities)
1965  {
1966  return false;
1967  }
1968  return htCapabilities->GetShortGuardInterval20();
1969 }
1970 
1971 uint16_t
1972 WifiRemoteStationManager::GetGuardInterval(const WifiRemoteStation* station) const
1973 {
1974  return station->m_state->m_guardInterval;
1975 }
1976 
1977 bool
1978 WifiRemoteStationManager::GetAggregation(const WifiRemoteStation* station) const
1979 {
1980  return station->m_state->m_aggregation;
1981 }
1982 
1983 uint8_t
1984 WifiRemoteStationManager::GetNumberOfSupportedStreams(const WifiRemoteStation* station) const
1985 {
1986  Ptr<const HtCapabilities> htCapabilities = station->m_state->m_htCapabilities;
1987 
1988  if (!htCapabilities)
1989  {
1990  return 1;
1991  }
1992  return htCapabilities->GetRxHighestSupportedAntennas();
1993 }
1994 
1995 uint8_t
1996 WifiRemoteStationManager::GetNess(const WifiRemoteStation* station) const
1997 {
1998  return station->m_state->m_ness;
1999 }
2000 
2002 WifiRemoteStationManager::GetPhy() const
2003 {
2004  return m_wifiPhy;
2005 }
2006 
2008 WifiRemoteStationManager::GetMac() const
2009 {
2010  return m_wifiMac;
2011 }
2012 
2013 uint8_t
2014 WifiRemoteStationManager::GetNSupported(const WifiRemoteStation* station) const
2015 {
2016  return static_cast<uint8_t>(station->m_state->m_operationalRateSet.size());
2017 }
2018 
2019 bool
2020 WifiRemoteStationManager::GetQosSupported(const WifiRemoteStation* station) const
2021 {
2022  return station->m_state->m_qosSupported;
2023 }
2024 
2025 bool
2026 WifiRemoteStationManager::GetHtSupported(const WifiRemoteStation* station) const
2027 {
2028  return bool(station->m_state->m_htCapabilities);
2029 }
2030 
2031 bool
2032 WifiRemoteStationManager::GetVhtSupported(const WifiRemoteStation* station) const
2033 {
2034  return bool(station->m_state->m_vhtCapabilities);
2035 }
2036 
2037 bool
2038 WifiRemoteStationManager::GetHeSupported(const WifiRemoteStation* station) const
2039 {
2040  return bool(station->m_state->m_heCapabilities);
2041 }
2042 
2043 bool
2044 WifiRemoteStationManager::GetEhtSupported(const WifiRemoteStation* station) const
2045 {
2046  return (bool)(station->m_state->m_ehtCapabilities);
2047 }
2048 
2049 bool
2050 WifiRemoteStationManager::GetEmlsrSupported(const WifiRemoteStation* station) const
2051 {
2052  auto mleCommonInfo = station->m_state->m_mleCommonInfo;
2053  return mleCommonInfo && mleCommonInfo->m_emlCapabilities &&
2054  mleCommonInfo->m_emlCapabilities->emlsrSupport == 1;
2055 }
2056 
2057 bool
2058 WifiRemoteStationManager::GetEmlsrEnabled(const WifiRemoteStation* station) const
2059 {
2060  return station->m_state->m_emlsrEnabled;
2061 }
2062 
2063 uint8_t
2064 WifiRemoteStationManager::GetNMcsSupported(const WifiRemoteStation* station) const
2065 {
2066  return static_cast<uint8_t>(station->m_state->m_operationalMcsSet.size());
2067 }
2068 
2069 uint32_t
2070 WifiRemoteStationManager::GetNNonErpSupported(const WifiRemoteStation* station) const
2071 {
2072  uint32_t size = 0;
2073  for (auto i = station->m_state->m_operationalRateSet.begin();
2074  i != station->m_state->m_operationalRateSet.end();
2075  i++)
2076  {
2077  if (i->GetModulationClass() == WIFI_MOD_CLASS_ERP_OFDM)
2078  {
2079  continue;
2080  }
2081  size++;
2082  }
2083  return size;
2084 }
2085 
2086 uint16_t
2087 WifiRemoteStationManager::GetChannelWidthSupported(Mac48Address address) const
2088 {
2089  return LookupState(address)->m_channelWidth;
2090 }
2091 
2092 bool
2093 WifiRemoteStationManager::GetShortGuardIntervalSupported(Mac48Address address) const
2094 {
2095  Ptr<const HtCapabilities> htCapabilities = LookupState(address)->m_htCapabilities;
2096 
2097  if (!htCapabilities)
2098  {
2099  return false;
2100  }
2101  return htCapabilities->GetShortGuardInterval20();
2102 }
2103 
2104 uint8_t
2105 WifiRemoteStationManager::GetNumberOfSupportedStreams(Mac48Address address) const
2106 {
2107  Ptr<const HtCapabilities> htCapabilities = LookupState(address)->m_htCapabilities;
2108 
2109  if (!htCapabilities)
2110  {
2111  return 1;
2112  }
2113  return htCapabilities->GetRxHighestSupportedAntennas();
2114 }
2115 
2116 uint8_t
2117 WifiRemoteStationManager::GetNMcsSupported(Mac48Address address) const
2118 {
2119  return static_cast<uint8_t>(LookupState(address)->m_operationalMcsSet.size());
2120 }
2121 
2122 bool
2123 WifiRemoteStationManager::GetDsssSupported(const Mac48Address& address) const
2124 {
2125  return (LookupState(address)->m_dsssSupported);
2126 }
2127 
2128 bool
2129 WifiRemoteStationManager::GetErpOfdmSupported(const Mac48Address& address) const
2130 {
2131  return (LookupState(address)->m_erpOfdmSupported);
2132 }
2133 
2134 bool
2135 WifiRemoteStationManager::GetOfdmSupported(const Mac48Address& address) const
2136 {
2137  return (LookupState(address)->m_ofdmSupported);
2138 }
2139 
2140 bool
2141 WifiRemoteStationManager::GetHtSupported(Mac48Address address) const
2142 {
2143  return bool(LookupState(address)->m_htCapabilities);
2144 }
2145 
2146 bool
2147 WifiRemoteStationManager::GetVhtSupported(Mac48Address address) const
2148 {
2149  return bool(LookupState(address)->m_vhtCapabilities);
2150 }
2151 
2152 bool
2153 WifiRemoteStationManager::GetHeSupported(Mac48Address address) const
2154 {
2155  return bool(LookupState(address)->m_heCapabilities);
2156 }
2157 
2158 bool
2159 WifiRemoteStationManager::GetEhtSupported(Mac48Address address) const
2160 {
2161  return (bool)(LookupState(address)->m_ehtCapabilities);
2162 }
2163 
2164 bool
2165 WifiRemoteStationManager::GetEmlsrSupported(const Mac48Address& address) const
2166 {
2167  auto mleCommonInfo = LookupState(address)->m_mleCommonInfo;
2168  return mleCommonInfo && mleCommonInfo->m_emlCapabilities &&
2169  mleCommonInfo->m_emlCapabilities->emlsrSupport == 1;
2170 }
2171 
2172 bool
2173 WifiRemoteStationManager::GetEmlsrEnabled(const Mac48Address& address) const
2174 {
2175  if (auto stateIt = m_states.find(address); stateIt != m_states.cend())
2176  {
2177  return stateIt->second->m_emlsrEnabled;
2178  }
2179  return false;
2180 }
2181 
2182 void
2183 WifiRemoteStationManager::SetDefaultTxPowerLevel(uint8_t txPower)
2184 {
2185  m_defaultTxPowerLevel = txPower;
2186 }
2187 
2188 uint8_t
2189 WifiRemoteStationManager::GetNumberOfAntennas() const
2190 {
2191  return m_wifiPhy->GetNumberOfAntennas();
2192 }
2193 
2194 uint8_t
2195 WifiRemoteStationManager::GetMaxNumberOfTransmitStreams() const
2196 {
2197  return m_wifiPhy->GetMaxSupportedTxSpatialStreams();
2198 }
2199 
2200 bool
2201 WifiRemoteStationManager::UseLdpcForDestination(Mac48Address dest) const
2202 {
2203  return (GetLdpcSupported() && GetLdpcSupported(dest));
2204 }
2205 
2206 } // namespace ns3
The IEEE 802.11be EHT Capabilities.
uint8_t GetHighestSupportedRxMcs(EhtMcsAndNssSet::EhtMcsMapType mapType)
Get the highest supported RX MCS for a given EHT-MCS map type.
Hold variables of type enum.
Definition: enum.h:62
static WifiMode GetErpOfdmRate(uint64_t rate)
Return a WifiMode for ERP-OFDM corresponding to the provided rate.
static WifiMode GetErpOfdmRate6Mbps()
Return a WifiMode for ERP-OFDM at 6 Mbps.
The IEEE 802.11ax HE Capabilities.
uint8_t GetHighestMcsSupported() const
Get highest MCS supported.
bool GetHeSuPpdu1xHeLtf800nsGi() const
Get 1xHE-LTF and 800ns GI in HE SU PPDU reception support.
uint8_t GetChannelWidthSet() const
Get channel width set.
The HT Capabilities Information Element.
uint8_t GetSupportedChannelWidth() const
Return the supported channel width.
bool IsSupportedMcs(uint8_t mcs) const
Return the is MCS supported flag.
an EUI-48 address
Definition: mac48-address.h:46
bool IsGroup() const
A base class which provides memory management and object aggregation.
Definition: object.h:89
static WifiMode GetOfdmRate(uint64_t rate, uint16_t bw=20)
Return a WifiMode for OFDM corresponding to the provided rate and the channel bandwidth (20,...
Definition: ofdm-phy.cc:411
static Time Now()
Return the current simulation virtual time.
Definition: simulator.cc:208
uint16_t GetAssociationId() const
Return the association ID.
bool IsAssociated() const
Return whether we are associated with an AP.
a unique identifier for an interface.
Definition: type-id.h:59
TypeId SetParent(TypeId tid)
Set the parent TypeId.
Definition: type-id.cc:931
Hold an unsigned integer type.
Definition: uinteger.h:45
The IEEE 802.11ac VHT Capabilities.
bool IsSupportedMcs(uint8_t mcs, uint8_t nss) const
Get the is MCS supported.
uint8_t GetSupportedChannelWidthSet() const
Get the supported channel width set.
Implements the IEEE 802.11 MAC header.
uint8_t GetQosTid() const
Return the Traffic ID of a QoS header.
Mac48Address GetAddr1() const
Return the address in the Address 1 field.
bool IsMgt() const
Return true if the Type is Management.
bool IsQosData() const
Return true if the Type is DATA and Subtype is one of the possible values for QoS Data.
TypeOfStation GetTypeOfStation() const
Return the type of station.
Definition: wifi-mac.cc:422
represent a single transmission mode
Definition: wifi-mode.h:51
bool IsHigherDataRate(WifiMode mode) const
Definition: wifi-mode.cc:208
WifiModulationClass GetModulationClass() const
Definition: wifi-mode.cc:185
uint64_t GetDataRate(uint16_t channelWidth, uint16_t guardInterval, uint8_t nss) const
Definition: wifi-mode.cc:122
uint8_t GetMcsValue() const
Definition: wifi-mode.cc:163
Ptr< VhtConfiguration > GetVhtConfiguration() const
Ptr< EhtConfiguration > GetEhtConfiguration() const
Ptr< HtConfiguration > GetHtConfiguration() const
Ptr< HeConfiguration > GetHeConfiguration() const
uint16_t GetChannelWidth() const
Definition: wifi-phy.cc:1051
WifiPhyBand GetPhyBand() const
Get the configured Wi-Fi band.
Definition: wifi-phy.cc:1021
Ptr< WifiNetDevice > GetDevice() const
Return the device this PHY is associated with.
Definition: wifi-phy.cc:613
uint16_t GetTxBandwidth(WifiMode mode, uint16_t maxAllowedBandWidth=std::numeric_limits< uint16_t >::max()) const
Get the bandwidth for a transmission occurring on the current operating channel and using the given W...
Definition: wifi-phy.cc:1075
std::list< WifiMode > GetMcsList() const
The WifiPhy::GetMcsList() method is used (e.g., by a WifiRemoteStationManager) to determine the set o...
Definition: wifi-phy.cc:2003
std::list< WifiMode > GetModeList() const
The WifiPhy::GetModeList() method is used (e.g., by a WifiRemoteStationManager) to determine the set ...
Definition: wifi-phy.cc:1954
TID independent remote station statistics.
void NotifyTxSuccess(uint32_t retryCounter)
Updates average frame error rate when data or RTS was transmitted successfully.
void NotifyTxFailed()
Updates average frame error rate when final data or RTS has failed.
hold a list of per-remote-station state.
void ReportDataFailed(Ptr< const WifiMpdu > mpdu)
Should be invoked whenever the AckTimeout associated to a transmission attempt expires.
bool GetQosSupported(Mac48Address address) const
Return whether the given station is QoS capable.
WifiTxVector GetAckTxVector(Mac48Address to, const WifiTxVector &dataTxVector) const
Return a TXVECTOR for the Ack frame given the destination and the mode of the Data used by the sender...
virtual bool DoNeedFragmentation(WifiRemoteStation *station, Ptr< const Packet > packet, bool normally)
uint32_t m_fragmentationThreshold
Current threshold for fragmentation.
void SetShortSlotTimeEnabled(bool enable)
Enable or disable short slot time.
void SetPsMode(const Mac48Address &address, bool isInPsMode)
Register whether the STA is in Power Save mode or not.
void AddBasicMode(WifiMode mode)
Invoked in a STA upon association to store the set of rates which belong to the BSSBasicRateSet of th...
virtual int64_t AssignStreams(int64_t stream)
Assign a fixed random variable stream number to the random variables used by this model.
uint32_t GetNFragments(Ptr< const WifiMpdu > mpdu)
Return the number of fragments needed for the given packet.
uint16_t GetAssociationId(Mac48Address remoteAddress) const
Get the AID of a remote station.
ProtectionMode m_htProtectionMode
Protection mode for HT stations when non-HT stations are detected.
void AdjustTxVectorForIcf(WifiTxVector &txVector) const
Adjust the TXVECTOR for an initial Control frame to ensure that the modulation class is non-HT and th...
std::array< uint32_t, AC_BE_NQOS > m_slrc
long retry count per AC
WifiRemoteStation * Lookup(Mac48Address address) const
Return the station associated with the given address.
uint32_t GetFragmentationThreshold() const
Return the fragmentation threshold.
bool NeedRetransmission(Ptr< const WifiMpdu > mpdu)
uint8_t GetNBasicModes() const
Return the number of basic modes we support.
bool UseLdpcForDestination(Mac48Address dest) const
uint32_t m_maxSsrc
Maximum STA short retry count (SSRC)
void SetRtsCtsThreshold(uint32_t threshold)
Sets the RTS threshold.
void AddAllSupportedMcs(Mac48Address address)
Invoked in a STA or AP to store all of the MCS supported by a destination which is also supported loc...
TracedCallback< Mac48Address > m_macTxRtsFailed
The trace source fired when the transmission of a single RTS has failed.
virtual bool DoNeedRts(WifiRemoteStation *station, uint32_t size, bool normally)
void DoSetFragmentationThreshold(uint32_t threshold)
Actually sets the fragmentation threshold, it also checks the validity of the given threshold.
bool IsBrandNew(Mac48Address address) const
Return whether the station state is brand new.
virtual void DoReportFinalDataFailed(WifiRemoteStation *station)=0
This method is a pure virtual method that must be implemented by the sub-class.
virtual void DoReportRtsOk(WifiRemoteStation *station, double ctsSnr, WifiMode ctsMode, double rtsSnr)=0
This method is a pure virtual method that must be implemented by the sub-class.
bool GetShortSlotTimeEnabled() const
Return whether the device uses short slot time.
void DoDispose() override
Destructor implementation.
virtual void DoReportDataFailed(WifiRemoteStation *station)=0
This method is a pure virtual method that must be implemented by the sub-class.
bool NeedRts(const WifiMacHeader &header, uint32_t size)
bool IsLastFragment(Ptr< const WifiMpdu > mpdu, uint32_t fragmentNumber)
void ReportFinalDataFailed(Ptr< const WifiMpdu > mpdu)
Should be invoked after calling ReportDataFailed if NeedRetransmission returns false.
void SetUseNonErpProtection(bool enable)
Enable or disable protection for non-ERP stations.
bool m_useNonHtProtection
flag if protection for non-HT stations against HT transmissions is enabled
bool GetShortPreambleSupported(Mac48Address address) const
Return whether the station supports short PHY preamble or not.
void AddAllSupportedModes(Mac48Address address)
Invoked in a STA or AP to store all of the modes supported by a destination which is also supported l...
std::optional< Mac48Address > GetAffiliatedStaAddress(const Mac48Address &mldAddress) const
Get the address of the remote station operating on this link and affiliated with the MLD having the g...
void ReportRtsOk(const WifiMacHeader &header, double ctsSnr, WifiMode ctsMode, double rtsSnr)
Should be invoked whenever we receive the CTS associated to an RTS we just sent.
void AddSupportedMcs(Mac48Address address, WifiMode mcs)
Record the MCS index supported by the station.
WifiTxVector GetBlockAckTxVector(Mac48Address to, const WifiTxVector &dataTxVector) const
Return a TXVECTOR for the BlockAck frame given the destination and the mode of the Data used by the s...
void RemoveAllSupportedMcs(Mac48Address address)
Invoked in a STA or AP to delete all of the supported MCS by a destination.
uint32_t DoGetFragmentationThreshold() const
Return the current fragmentation threshold.
WifiModeList m_bssBasicMcsSet
basic MCS set
TracedCallback< Mac48Address > m_macTxFinalRtsFailed
The trace source fired when the transmission of a RTS has exceeded the maximum number of attempts.
WifiMode GetNonUnicastMode() const
Return a mode for non-unicast packets.
bool m_shortPreambleEnabled
flag if short PHY preamble is enabled
bool GetShortSlotTimeSupported(Mac48Address address) const
Return whether the station supports short ERP slot time or not.
void SetShortPreambleEnabled(bool enable)
Enable or disable short PHY preambles.
virtual WifiTxVector DoGetDataTxVector(WifiRemoteStation *station, uint16_t allowedWidth)=0
WifiMode GetDefaultMcs() const
Return the default Modulation and Coding Scheme (MCS) index.
Ptr< WifiPhy > m_wifiPhy
This is a pointer to the WifiPhy associated with this WifiRemoteStationManager that is set on call to...
void ReportRxOk(Mac48Address address, RxSignalInfo rxSignalInfo, WifiTxVector txVector)
uint8_t m_defaultTxPowerLevel
Default transmission power level.
static TypeId GetTypeId()
Get the type ID.
WifiMode m_nonUnicastMode
Transmission mode for non-unicast Data frames.
void SetUseNonHtProtection(bool enable)
Enable or disable protection for non-HT stations.
uint16_t GetGuardInterval() const
Return the supported HE guard interval duration (in nanoseconds).
bool IsAssociated(Mac48Address address) const
Return whether the station associated.
bool NeedFragmentation(Ptr< const WifiMpdu > mpdu)
void ReportAmpduTxStatus(Mac48Address address, uint16_t nSuccessfulMpdus, uint16_t nFailedMpdus, double rxSnr, double dataSnr, WifiTxVector dataTxVector)
Typically called per A-MPDU, either when a Block ACK was successfully received or when a BlockAckTime...
uint32_t GetFragmentOffset(Ptr< const WifiMpdu > mpdu, uint32_t fragmentNumber)
WifiRemoteStationInfo GetInfo(Mac48Address address)
uint32_t GetFragmentSize(Ptr< const WifiMpdu > mpdu, uint32_t fragmentNumber)
WifiTxVector GetCtsToSelfTxVector()
Since CTS-to-self parameters are not dependent on the station, it is implemented in wifi remote stati...
uint8_t GetNBasicMcs() const
Return the number of basic MCS index.
bool GetHtSupported() const
Return whether the device has HT capability support enabled.
void RecordWaitAssocTxOk(Mac48Address address)
Records that we are waiting for an ACK for the association response we sent.
void SetFragmentationThreshold(uint32_t threshold)
Sets a fragmentation threshold.
Ptr< WifiMac > m_wifiMac
This is a pointer to the WifiMac associated with this WifiRemoteStationManager that is set on call to...
void RecordGotAssocTxOk(Mac48Address address)
Records that we got an ACK for the association response we sent.
bool GetLdpcSupported() const
Return whether the device has LDPC support enabled.
WifiTxVector GetRtsTxVector(Mac48Address address, uint16_t allowedWidth)
bool GetEhtSupported() const
Return whether the device has EHT capability support enabled.
void AddSupportedMode(Mac48Address address, WifiMode mode)
Invoked in a STA or AP to store the set of modes supported by a destination which is also supported l...
std::optional< double > GetMostRecentRssi(Mac48Address address) const
std::shared_ptr< WifiRemoteStationState > LookupState(Mac48Address address) const
Return the state of the station associated with the given address.
std::array< uint32_t, AC_BE_NQOS > m_ssrc
short retry count per AC
void RecordAssocRefused(Mac48Address address)
Records that association request was refused.
bool IsInPsMode(const Mac48Address &address) const
Return whether the STA is currently in Power Save mode.
void ReportFinalRtsFailed(const WifiMacHeader &header)
Should be invoked after calling ReportRtsFailed if NeedRetransmission returns false.
StationStates m_states
States of known stations.
bool NeedCtsToSelf(WifiTxVector txVector)
Return if we need to do CTS-to-self before sending a DATA.
WifiTxVector GetCtsTxVector(Mac48Address to, WifiMode rtsTxMode) const
Return a TXVECTOR for the CTS frame given the destination and the mode of the RTS used by the sender.
void SetMaxSsrc(uint32_t maxSsrc)
Sets the maximum STA short retry count (SSRC).
WifiMode GetBasicMcs(uint8_t i) const
Return the MCS at the given list index.
TracedCallback< Mac48Address > m_macTxDataFailed
The trace source fired when the transmission of a single data packet has failed.
uint16_t GetStaId(Mac48Address address, const WifiTxVector &txVector) const
If the given TXVECTOR is used for a MU transmission, return the STAID of the station with the given a...
WifiMode GetBasicMode(uint8_t i) const
Return a basic mode from the set of basic modes.
void AddSupportedPhyPreamble(Mac48Address address, bool isShortPreambleSupported)
Record whether the short PHY preamble is supported by the station.
bool GetShortGuardIntervalSupported() const
Return whether the device has SGI support enabled.
virtual void SetupPhy(const Ptr< WifiPhy > phy)
Set up PHY associated with this device since it is the object that knows the full set of transmit rat...
virtual void DoReportRtsFailed(WifiRemoteStation *station)=0
This method is a pure virtual method that must be implemented by the sub-class.
void RecordDisassociated(Mac48Address address)
Records that the STA was disassociated.
virtual WifiTxVector DoGetRtsTxVector(WifiRemoteStation *station)=0
uint16_t GetChannelWidthSupported(Mac48Address address) const
Return the channel width supported by the station.
uint32_t m_maxSlrc
Maximum STA long retry count (SLRC)
void Reset()
Reset the station, invoked in a STA upon dis-association or in an AP upon reboot.
bool GetUseNonErpProtection() const
Return whether the device supports protection of non-ERP stations.
bool IsAssocRefused(Mac48Address address) const
Return whether we refused an association request from the given station.
virtual void DoReportAmpduTxStatus(WifiRemoteStation *station, uint16_t nSuccessfulMpdus, uint16_t nFailedMpdus, double rxSnr, double dataSnr, uint16_t dataChannelWidth, uint8_t dataNss)
Typically called per A-MPDU, either when a Block ACK was successfully received or when a BlockAckTime...
bool GetVhtSupported() const
Return whether the device has VHT capability support enabled.
ProtectionMode m_erpProtectionMode
Protection mode for ERP stations when non-ERP stations are detected.
WifiModeList m_bssBasicRateSet
This member is the list of WifiMode objects that comprise the BSSBasicRateSet parameter.
virtual void DoReportDataOk(WifiRemoteStation *station, double ackSnr, WifiMode ackMode, double dataSnr, uint16_t dataChannelWidth, uint8_t dataNss)=0
This method is a pure virtual method that must be implemented by the sub-class.
WifiTxVector GetDataTxVector(const WifiMacHeader &header, uint16_t allowedWidth)
void ReportDataOk(Ptr< const WifiMpdu > mpdu, double ackSnr, WifiMode ackMode, double dataSnr, WifiTxVector dataTxVector)
Should be invoked whenever we receive the ACK associated to a data packet we just sent.
void ReportRtsFailed(const WifiMacHeader &header)
Should be invoked whenever the RtsTimeout associated to a transmission attempt expires.
void AddSupportedErpSlotTime(Mac48Address address, bool isShortSlotTimeSupported)
Record whether the short ERP slot time is supported by the station.
bool GetShortPreambleEnabled() const
Return whether the device uses short PHY preambles.
bool GetHeSupported() const
Return whether the device has HE capability support enabled.
virtual void DoReportRxOk(WifiRemoteStation *station, double rxSnr, WifiMode txMode)=0
This method is a pure virtual method that must be implemented by the sub-class.
virtual bool DoNeedRetransmission(WifiRemoteStation *station, Ptr< const Packet > packet, bool normally)
WifiMode GetDefaultMode() const
Return the default transmission mode.
void RecordGotAssocTxFailed(Mac48Address address)
Records that we missed an ACK for the association response we sent.
std::optional< Mac48Address > GetMldAddress(const Mac48Address &address) const
Get the address of the MLD the given station is affiliated with, if any.
virtual void DoReportFinalRtsFailed(WifiRemoteStation *station)=0
This method is a pure virtual method that must be implemented by the sub-class.
virtual void SetupMac(const Ptr< WifiMac > mac)
Set up MAC associated with this device since it is the object that knows the full set of timing param...
uint32_t m_rtsCtsThreshold
Threshold for RTS/CTS.
bool m_useNonErpProtection
flag if protection for non-ERP stations against ERP transmissions is enabled
WifiMode GetControlAnswerMode(WifiMode reqMode) const
Get control answer mode function.
bool m_shortSlotTimeEnabled
flag if short slot time is enabled
bool IsWaitAssocTxOk(Mac48Address address) const
Return whether we are waiting for an ACK for the association response we sent.
void SetMaxSlrc(uint32_t maxSlrc)
Sets the maximum STA long retry count (SLRC).
TracedCallback< Mac48Address > m_macTxFinalDataFailed
The trace source fired when the transmission of a data packet has exceeded the maximum number of atte...
bool GetUseNonHtProtection() const
Return whether the device supports protection of non-HT stations.
This class mimics the TXVECTOR which is to be passed to the PHY in order to define the parameters whi...
void SetNess(uint8_t ness)
Sets the Ness number.
void SetTxPowerLevel(uint8_t powerlevel)
Sets the selected transmission power level.
void SetLdpc(bool ldpc)
Sets if LDPC FEC coding is being used.
void SetChannelWidth(uint16_t channelWidth)
Sets the selected channelWidth (in MHz)
void SetGuardInterval(uint16_t guardInterval)
Sets the guard interval duration (in nanoseconds)
WifiMode GetMode(uint16_t staId=SU_STA_ID) const
If this TX vector is associated with an SU PPDU, return the selected payload transmission mode.
WifiModulationClass GetModulationClass() const
Get the modulation class specified by this TXVECTOR.
uint8_t GetNss(uint16_t staId=SU_STA_ID) const
If this TX vector is associated with an SU PPDU, return the number of spatial streams.
void SetBssColor(uint8_t color)
Set the BSS color.
void SetNTx(uint8_t nTx)
Sets the number of TX antennas.
uint16_t GetChannelWidth() const
void SetMode(WifiMode mode)
Sets the selected payload transmission mode.
void SetNss(uint8_t nss)
Sets the number of Nss.
void SetPreambleType(WifiPreamble preamble)
Sets the preamble type.
#define NS_ASSERT(condition)
At runtime, in debugging builds, if this condition is not true, the program prints the source file,...
Definition: assert.h:66
#define NS_ASSERT_MSG(condition, message)
At runtime, in debugging builds, if this condition is not true, the program prints the message to out...
Definition: assert.h:86
void Reset()
Reset the initial value of every attribute as well as the value of every global to what they were bef...
Definition: config.cc:855
#define NS_FATAL_ERROR(msg)
Report a fatal error with a message and terminate.
Definition: fatal-error.h:179
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition: log.h:202
#define NS_LOG_DEBUG(msg)
Use NS_LOG to output a message of level LOG_DEBUG.
Definition: log.h:268
#define NS_LOG_FUNCTION(parameters)
If log level LOG_FUNCTION is enabled, this macro will output all input parameters separated by ",...
#define NS_LOG_WARN(msg)
Use NS_LOG to output a message of level LOG_WARN.
Definition: log.h:261
#define NS_OBJECT_ENSURE_REGISTERED(type)
Register an Object subclass with the TypeId system.
Definition: object-base.h:46
Time Seconds(double value)
Construct a Time in the indicated unit.
Definition: nstime.h:1326
Ptr< const TraceSourceAccessor > MakeTraceSourceAccessor(T a)
Create a TraceSourceAccessor which will control access to the underlying trace source.
AcIndex QosUtilsMapTidToAc(uint8_t tid)
Maps TID (Traffic ID) to Access classes.
Definition: qos-utils.cc:134
WifiPreamble
The type of preamble to be used by an IEEE 802.11 transmission.
WifiModulationClass
This enumeration defines the modulation classes per (Table 10-6 "Modulation classes"; IEEE 802....
AcIndex
This enumeration defines the Access Categories as an enumeration with values corresponding to the AC ...
Definition: qos-utils.h:73
@ STA
Definition: wifi-mac.h:65
@ AP
Definition: wifi-mac.h:66
@ WIFI_PREAMBLE_LONG
@ WIFI_PREAMBLE_EHT_MU
@ WIFI_PREAMBLE_HE_SU
@ WIFI_PREAMBLE_VHT_SU
@ WIFI_PREAMBLE_HT_MF
@ WIFI_PHY_BAND_6GHZ
The 6 GHz band.
Definition: wifi-phy-band.h:39
@ WIFI_PHY_BAND_2_4GHZ
The 2.4 GHz band.
Definition: wifi-phy-band.h:35
@ WIFI_PHY_BAND_5GHZ
The 5 GHz band.
Definition: wifi-phy-band.h:37
@ WIFI_MOD_CLASS_OFDM
OFDM (Clause 17)
@ WIFI_MOD_CLASS_HR_DSSS
HR/DSSS (Clause 16)
@ WIFI_MOD_CLASS_HT
HT (Clause 19)
@ WIFI_MOD_CLASS_EHT
EHT (Clause 36)
@ WIFI_MOD_CLASS_VHT
VHT (Clause 22)
@ WIFI_MOD_CLASS_HE
HE (Clause 27)
@ WIFI_MOD_CLASS_DSSS
DSSS (Clause 15)
@ WIFI_MOD_CLASS_ERP_OFDM
ERP-OFDM (18.4)
address
Definition: first.py:47
Every class exported by the ns3 library is enclosed in the ns3 namespace.
static const uint16_t WIFI_MAC_FCS_LENGTH
The length in octets of the IEEE 802.11 MAC FCS field.
bool IsAllowedControlAnswerModulationClass(WifiModulationClass modClassReq, WifiModulationClass modClassAnswer)
Return whether the modulation class of the selected mode for the control answer frame is allowed.
Ptr< const AttributeChecker > MakeEnumChecker(T v, std::string n, Ts... args)
Make an EnumChecker pre-configured with a set of allowed values by name.
Definition: enum.h:194
uint16_t ConvertGuardIntervalToNanoSeconds(WifiMode mode, const Ptr< WifiNetDevice > device)
Convert the guard interval to nanoseconds based on the WifiMode.
WifiPreamble GetPreambleForTransmission(WifiModulationClass modulation, bool useShortPreamble)
Return the preamble to be used for the transmission.
Ptr< const AttributeAccessor > MakeUintegerAccessor(T1 a1)
Definition: uinteger.h:46
std::vector< WifiMode > WifiModeList
In various parts of the code, folk are interested in maintaining a list of transmission modes.
Definition: wifi-mode.h:262
static constexpr uint16_t SU_STA_ID
STA_ID to identify a single user (SU)
Definition: wifi-mode.h:35
mac
Definition: third.py:92
phy
Definition: third.py:89
EhtMcsMapType
The different EHT-MCS map types as defined in 9.4.2.313.4 Supported EHT-MCS And NSS Set field.
RxSignalInfo structure containing info on the received signal.
Definition: phy-entity.h:69
double rssi
RSSI in dBm.
Definition: phy-entity.h:71
double snr
SNR in linear scale.
Definition: phy-entity.h:70
hold per-remote-station state.
WifiRemoteStationState * m_state
Remote station state.
std::pair< double, Time > m_rssiAndUpdateTimePair
RSSI (in dBm) of the most recent packet received from the remote station along with update time.
std::shared_ptr< CommonInfoBasicMle > m_mleCommonInfo
remote station Multi-Link Element Common Info
Mac48Address m_address
Mac48Address of the remote station.
uint16_t m_channelWidth
Channel width (in MHz) supported by the remote station.
uint8_t m_ness
Number of extended spatial streams of the remote station.
bool m_aggregation
Flag if MPDU aggregation is used by the remote station.
bool m_qosSupported
Flag if QoS is supported by the station.
WifiModeList m_operationalRateSet
This member is the list of WifiMode objects that comprise the OperationalRateSet parameter for this r...
WifiModeList m_operationalMcsSet
operational MCS set
uint16_t m_guardInterval
HE Guard interval duration (in nanoseconds) supported by the remote station.
Ptr< const EhtCapabilities > m_ehtCapabilities
remote station EHT capabilities
Ptr< const VhtCapabilities > m_vhtCapabilities
remote station VHT capabilities
WifiRemoteStationInfo m_info
remote station info
bool m_emlsrEnabled
whether EMLSR mode is enabled on this link
Ptr< const HtCapabilities > m_htCapabilities
remote station HT capabilities
Ptr< const HeCapabilities > m_heCapabilities
remote station HE capabilities