58 #include "ns3/gnuplot.h"
59 #include "ns3/command-line.h"
60 #include "ns3/config.h"
61 #include "ns3/uinteger.h"
62 #include "ns3/double.h"
64 #include "ns3/yans-wifi-helper.h"
66 #include "ns3/mobility-helper.h"
67 #include "ns3/internet-stack-helper.h"
68 #include "ns3/ipv4-address-helper.h"
69 #include "ns3/packet-sink-helper.h"
70 #include "ns3/on-off-helper.h"
71 #include "ns3/yans-wifi-channel.h"
72 #include "ns3/wifi-net-device.h"
73 #include "ns3/wifi-mac.h"
74 #include "ns3/wifi-mac-header.h"
75 #include "ns3/flow-monitor-helper.h"
76 #include "ns3/ipv4-flow-classifier.h"
91 void CheckStatistics (
double time);
106 double GetBusyTime ();
109 typedef std::vector<std::pair<Time, DataRate> >
TxTime;
113 std::map<Mac48Address, double> currentPower;
114 std::map<Mac48Address, DataRate> currentRate;
115 uint32_t m_bytesTotal;
144 double power =
phy->GetTxPowerEnd ();
145 for (uint32_t j = 0; j < stas.
GetN (); j++)
150 currentPower[addr] = power;
151 currentRate[addr] = dataRate;
153 currentRate[
Mac48Address (
"ff:ff:ff:ff:ff:ff")] = dataRate;
165 m_output.SetTitle (
"Throughput Mbits/s");
166 m_output_idle.SetTitle (
"Idle Time");
167 m_output_busy.SetTitle (
"Busy Time");
168 m_output_rx.SetTitle (
"RX Time");
169 m_output_tx.SetTitle (
"TX Time");
175 uint32_t nModes =
phy->GetNModes ();
176 for (uint32_t i = 0; i < nModes; i++)
186 timeTable.push_back (std::make_pair (time, dataRate));
193 for (TxTime::const_iterator i = timeTable.begin (); i != timeTable.end (); i++)
195 if (rate == i->second)
213 totalEnergy += pow (10.0, currentPower[dest] / 10.0) * GetCalcTxTime (currentRate[dest]).GetSeconds ();
214 totalTime += GetCalcTxTime (currentRate[dest]).GetSeconds ();
221 currentPower[dest] = newPower;
227 currentRate[dest] = newRate;
258 m_bytesTotal += packet->
GetSize ();
264 double mbs = ((m_bytesTotal * 8.0) / (1000000 * time));
266 double atp = totalEnergy / time;
272 m_output_idle.Add ((
Simulator::Now ()).GetSeconds (), idleTime * 100);
273 m_output_busy.Add ((
Simulator::Now ()).GetSeconds (), busyTime * 100);
274 m_output_tx.Add ((
Simulator::Now ()).GetSeconds (), txTime * 100);
275 m_output_rx.Add ((
Simulator::Now ()).GetSeconds (), rxTime * 100);
293 return m_output_power;
299 return m_output_idle;
305 return m_output_busy;
323 return totalBusyTime + totalRxTime;
328 NS_LOG_INFO ((
Simulator::Now ()).GetSeconds () <<
" " << dest <<
" Old power=" << oldPower <<
" New power=" << newPower);
336 int main (
int argc,
char *argv[])
340 double maxPower = 17;
342 uint32_t powerLevels = 18;
344 uint32_t rtsThreshold = 2346;
345 std::string manager =
"ns3::ParfWifiManager";
346 std::string outputFileName =
"parf";
355 uint32_t simuTime = 100;
358 cmd.AddValue (
"manager",
"PRC Manager", manager);
359 cmd.AddValue (
"rtsThreshold",
"RTS threshold", rtsThreshold);
360 cmd.AddValue (
"outputFileName",
"Output filename", outputFileName);
361 cmd.AddValue (
"simuTime",
"Total simulation time (sec)", simuTime);
362 cmd.AddValue (
"maxPower",
"Maximum available transmission level (dbm).", maxPower);
363 cmd.AddValue (
"minPower",
"Minimum available transmission level (dbm).", minPower);
364 cmd.AddValue (
"powerLevels",
"Number of transmission power levels available between "
365 "TxPowerStart and TxPowerEnd included.", powerLevels);
366 cmd.AddValue (
"AP1_x",
"Position of AP1 in x coordinate", ap1_x);
367 cmd.AddValue (
"AP1_y",
"Position of AP1 in y coordinate", ap1_y);
368 cmd.AddValue (
"STA1_x",
"Position of STA1 in x coordinate", sta1_x);
369 cmd.AddValue (
"STA1_y",
"Position of STA1 in y coordinate", sta1_y);
370 cmd.AddValue (
"AP2_x",
"Position of AP2 in x coordinate", ap2_x);
371 cmd.AddValue (
"AP2_y",
"Position of AP2 in y coordinate", ap2_y);
372 cmd.AddValue (
"STA2_x",
"Position of STA2 in x coordinate", sta2_x);
373 cmd.AddValue (
"STA2_y",
"Position of STA2 in y coordinate", sta2_y);
374 cmd.Parse (argc, argv);
397 wifi.SetRemoteStationManager (
"ns3::AarfWifiManager",
"RtsCtsThreshold",
UintegerValue (rtsThreshold));
402 wifiMac.
SetType (
"ns3::StaWifiMac",
408 wifiMac.
SetType (
"ns3::StaWifiMac",
419 wifiMac.
SetType (
"ns3::ApWifiMac",
421 wifiApDevices.
Add (
wifi.Install (wifiPhy, wifiMac, wifiApNodes.
Get (0)));
424 wifiMac.
SetType (
"ns3::ApWifiMac",
427 wifiApDevices.
Add (
wifi.Install (wifiPhy, wifiMac, wifiApNodes.
Get (1)));
429 wifiDevices.
Add (wifiStaDevices);
430 wifiDevices.
Add (wifiApDevices);
435 positionAlloc->Add (Vector (ap1_x, ap1_y, 0.0));
436 positionAlloc->Add (Vector (sta1_x, sta1_y, 0.0));
437 positionAlloc->Add (Vector (ap2_x, ap2_y, 0.0));
438 positionAlloc->Add (Vector (sta2_x, sta2_y, 0.0));
439 mobility.SetPositionAllocator (positionAlloc);
440 mobility.SetMobilityModel (
"ns3::ConstantPositionMobilityModel");
449 stack.Install (wifiApNodes);
452 address.SetBase (
"10.1.1.0",
"255.255.255.0");
475 apps_source.
Add (onoff1.Install (wifiApNodes.
Get (1)));
495 Config::Connect (
"/NodeList/0/DeviceList/*/$ns3::WifiNetDevice/RemoteStationManager/$" + manager +
"/PowerChange",
497 Config::Connect (
"/NodeList/0/DeviceList/*/$ns3::WifiNetDevice/RemoteStationManager/$" + manager +
"/RateChange",
499 Config::Connect (
"/NodeList/1/DeviceList/*/$ns3::WifiNetDevice/RemoteStationManager/$" + manager +
"/PowerChange",
501 Config::Connect (
"/NodeList/1/DeviceList/*/$ns3::WifiNetDevice/RemoteStationManager/$" + manager +
"/RateChange",
504 Config::Connect (
"/NodeList/0/DeviceList/*/$ns3::WifiNetDevice/Phy/PhyTxBegin",
506 Config::Connect (
"/NodeList/1/DeviceList/*/$ns3::WifiNetDevice/Phy/PhyTxBegin",
510 Config::Connect (
"/NodeList/0/DeviceList/*/$ns3::WifiNetDevice/Phy/$ns3::YansWifiPhy/State/State",
512 Config::Connect (
"/NodeList/1/DeviceList/*/$ns3::WifiNetDevice/Phy/$ns3::YansWifiPhy/State/State",
519 Config::Connect (
"/NodeList/[0-1]/DeviceList/*/$ns3::WifiNetDevice/RemoteStationManager/$" + manager +
"/PowerChange",
521 Config::Connect (
"/NodeList/[0-1]/DeviceList/*/$ns3::WifiNetDevice/RemoteStationManager/$" + manager +
"/RateChange",
534 std::map<FlowId, FlowMonitor::FlowStats> stats = monitor->GetFlowStats ();
535 for (std::map<FlowId, FlowMonitor::FlowStats>::const_iterator i = stats.begin (); i != stats.end (); ++i)
541 NS_LOG_INFO (
" Tx Bytes: " << i->second.txBytes <<
"\n");
542 NS_LOG_INFO (
" Rx Bytes: " << i->second.rxBytes <<
"\n");
543 NS_LOG_UNCOND (
" Throughput to 10.1.1.1: " << i->second.rxBytes * 8.0 / (i->second.timeLastRxPacket.GetSeconds () - i->second.timeFirstTxPacket.GetSeconds ()) / 1024 / 1024 <<
" Mbps\n");
544 NS_LOG_INFO (
" Mean delay: " << i->second.delaySum.GetSeconds () / i->second.rxPackets <<
"\n");
545 NS_LOG_INFO (
" Mean jitter: " << i->second.jitterSum.GetSeconds () / (i->second.rxPackets - 1) <<
"\n");
551 NS_LOG_INFO (
" Tx Bytes: " << i->second.txBytes <<
"\n");
552 NS_LOG_INFO (
" Rx Bytes: " << i->second.rxBytes <<
"\n");
553 NS_LOG_UNCOND (
" Throughput to 10.1.1.2: " << i->second.rxBytes * 8.0 / (i->second.timeLastRxPacket.GetSeconds () - i->second.timeFirstTxPacket.GetSeconds ()) / 1024 / 1024 <<
" Mbps\n");
554 NS_LOG_INFO (
" Mean delay: " << i->second.delaySum.GetSeconds () / i->second.rxPackets <<
"\n");
555 NS_LOG_INFO (
" Mean jitter: " << i->second.jitterSum.GetSeconds () / (i->second.rxPackets - 1) <<
"\n");
561 std::ofstream outfileTh0 ((
"throughput-" + outputFileName +
"-0.plt").c_str ());
562 Gnuplot gnuplot =
Gnuplot ((
"throughput-" + outputFileName +
"-0.eps").c_str (),
"Throughput");
564 gnuplot.
SetLegend (
"Time (seconds)",
"Throughput (Mb/s)");
565 gnuplot.
SetTitle (
"Throughput (AP0 to STA) vs time");
569 if (manager.compare (
"ns3::ParfWifiManager") == 0
570 || manager.compare (
"ns3::AparfWifiManager") == 0
571 || manager.compare (
"ns3::RrpaaWifiManager") == 0)
573 std::ofstream outfilePower0 ((
"power-" + outputFileName +
"-0.plt").c_str ());
574 gnuplot =
Gnuplot ((
"power-" + outputFileName +
"-0.eps").c_str (),
"Average Transmit Power");
576 gnuplot.
SetLegend (
"Time (seconds)",
"Power (mW)");
577 gnuplot.
SetTitle (
"Average transmit power (AP0 to STA) vs time");
582 std::ofstream outfileTx0 ((
"tx-" + outputFileName +
"-0.plt").c_str ());
583 gnuplot =
Gnuplot ((
"tx-" + outputFileName +
"-0.eps").c_str (),
"Time in TX State");
585 gnuplot.
SetLegend (
"Time (seconds)",
"Percent");
586 gnuplot.
SetTitle (
"Percentage time AP0 in TX state vs time");
590 std::ofstream outfileRx0 ((
"rx-" + outputFileName +
"-0.plt").c_str ());
591 gnuplot =
Gnuplot ((
"rx-" + outputFileName +
"-0.eps").c_str (),
"Time in RX State");
593 gnuplot.
SetLegend (
"Time (seconds)",
"Percent");
594 gnuplot.
SetTitle (
"Percentage time AP0 in RX state vs time");
598 std::ofstream outfileBusy0 ((
"busy-" + outputFileName +
"-0.plt").c_str ());
599 gnuplot =
Gnuplot ((
"busy-" + outputFileName +
"-0.eps").c_str (),
"Time in Busy State");
601 gnuplot.
SetLegend (
"Time (seconds)",
"Percent");
602 gnuplot.
SetTitle (
"Percentage time AP0 in Busy state vs time");
606 std::ofstream outfileIdle0 ((
"idle-" + outputFileName +
"-0.plt").c_str ());
607 gnuplot =
Gnuplot ((
"idle-" + outputFileName +
"-0.eps").c_str (),
"Time in Idle State");
609 gnuplot.
SetLegend (
"Time (seconds)",
"Percent");
610 gnuplot.
SetTitle (
"Percentage time AP0 in Idle state vs time");
615 std::ofstream outfileTh1 ((
"throughput-" + outputFileName +
"-1.plt").c_str ());
616 gnuplot =
Gnuplot ((
"throughput-" + outputFileName +
"-1.eps").c_str (),
"Throughput");
618 gnuplot.
SetLegend (
"Time (seconds)",
"Throughput (Mb/s)");
619 gnuplot.
SetTitle (
"Throughput (AP1 to STA) vs time");
623 if (manager.compare (
"ns3::ParfWifiManager") == 0
624 || manager.compare (
"ns3::AparfWifiManager") == 0
625 || manager.compare (
"ns3::RrpaaWifiManager") == 0)
627 std::ofstream outfilePower1 ((
"power-" + outputFileName +
"-1.plt").c_str ());
628 gnuplot =
Gnuplot ((
"power-" + outputFileName +
"-1.eps").c_str (),
"Average Transmit Power");
630 gnuplot.
SetLegend (
"Time (seconds)",
"Power (mW)");
631 gnuplot.
SetTitle (
"Average transmit power (AP1 to STA) vs time");
636 std::ofstream outfileTx1 ((
"tx-" + outputFileName +
"-1.plt").c_str ());
637 gnuplot =
Gnuplot ((
"tx-" + outputFileName +
"-1.eps").c_str (),
"Time in TX State");
639 gnuplot.
SetLegend (
"Time (seconds)",
"Percent");
640 gnuplot.
SetTitle (
"Percentage time AP1 in TX state vs time");
644 std::ofstream outfileRx1 ((
"rx-" + outputFileName +
"-1.plt").c_str ());
645 gnuplot =
Gnuplot ((
"rx-" + outputFileName +
"-1.eps").c_str (),
"Time in RX State");
647 gnuplot.
SetLegend (
"Time (seconds)",
"Percent");
648 gnuplot.
SetTitle (
"Percentage time AP1 in RX state vs time");
652 std::ofstream outfileBusy1 ((
"busy-" + outputFileName +
"-1.plt").c_str ());
653 gnuplot =
Gnuplot ((
"busy-" + outputFileName +
"-1.eps").c_str (),
"Time in Busy State");
655 gnuplot.
SetLegend (
"Time (seconds)",
"Percent");
656 gnuplot.
SetTitle (
"Percentage time AP1 in Busy state vs time");
660 std::ofstream outfileIdle1 ((
"idle-" + outputFileName +
"-1.plt").c_str ());
661 gnuplot =
Gnuplot ((
"idle-" + outputFileName +
"-1.eps").c_str (),
"Time in Idle State");
663 gnuplot.
SetLegend (
"Time (seconds)",
"Percent");
664 gnuplot.
SetTitle (
"Percentage time AP1 in Idle state vs time");
Gnuplot2dDataset m_output_busy
Gnuplot2dDataset GetPowerDatafile()
void RateCallback(std::string path, DataRate oldRate, DataRate newRate, Mac48Address dest)
Gnuplot2dDataset GetDatafile()
void RxCallback(std::string path, Ptr< const Packet > packet, const Address &from)
NodeStatistics(NetDeviceContainer aps, NetDeviceContainer stas)
Gnuplot2dDataset GetTxDatafile()
Time GetCalcTxTime(DataRate rate)
void PowerCallback(std::string path, double oldPower, double newPower, Mac48Address dest)
Gnuplot2dDataset GetRxDatafile()
void SetupPhy(Ptr< WifiPhy > phy)
std::vector< std::pair< Time, DataRate > > TxTime
Gnuplot2dDataset m_output_tx
Gnuplot2dDataset GetBusyDatafile()
void CheckStatistics(double time)
void StateCallback(std::string path, Time init, Time duration, WifiPhyState state)
Gnuplot2dDataset m_output_rx
Gnuplot2dDataset m_output_idle
Gnuplot2dDataset GetIdleDatafile()
void PhyCallback(std::string path, Ptr< const Packet > packet, double powerW)
a polymophic address class
holds a vector of ns3::Application pointers.
void Start(Time start)
Arrange for all of the Applications in this container to Start() at the Time given as a parameter.
void Add(ApplicationContainer other)
Append the contents of another ApplicationContainer to the end of this container.
void Stop(Time stop)
Arrange for all of the Applications in this container to Stop() at the Time given as a parameter.
Parse command-line arguments.
Class for representing data rates.
This class can be used to hold variables of floating point type such as 'double' or 'float'.
Helper to enable IP flow monitoring on a set of Nodes.
Ptr< FlowClassifier > GetClassifier()
Retrieve the FlowClassifier object for IPv4 created by the Install* methods.
Ptr< FlowMonitor > InstallAll()
Enable flow monitoring on all nodes.
Class to represent a 2D points plot.
a simple class to generate gnuplot-ready plotting commands from a set of datasets.
void AddDataset(const GnuplotDataset &dataset)
void SetLegend(const std::string &xLegend, const std::string &yLegend)
void SetTerminal(const std::string &terminal)
void GenerateOutput(std::ostream &os)
Writes gnuplot commands and data values to a single output stream.
void SetTitle(const std::string &title)
aggregate IP/TCP/UDP functionality to existing Nodes.
A helper class to make life easier while doing simple IPv4 address assignment in scripts.
Ipv4 addresses are stored in host order in this class.
holds a vector of std::pair of Ptr<Ipv4> and interface index.
Ipv4Address GetAddress(uint32_t i, uint32_t j=0) const
Helper class used to assign positions and mobility models to nodes.
holds a vector of ns3::NetDevice pointers
uint32_t GetN(void) const
Get the number of Ptr<NetDevice> stored in this container.
void Add(NetDeviceContainer other)
Append the contents of another NetDeviceContainer to the end of this container.
Ptr< NetDevice > Get(uint32_t i) const
Get the Ptr<NetDevice> stored in this container at a given index.
keep track of a set of node pointers.
void Create(uint32_t n)
Create n nodes and append pointers to them to the end of this NodeContainer.
Ptr< Node > Get(uint32_t i) const
Get the Ptr<Node> stored in this container at a given index.
A helper to make it easier to instantiate an ns3::OnOffApplication on a set of nodes.
uint32_t PeekHeader(Header &header) const
Deserialize but does not remove the header from the internal buffer.
uint32_t GetSize(void) const
Returns the the size in bytes of the packet (including the zero-filled initial payload).
A helper to make it easier to instantiate an ns3::PacketSinkApplication on a set of nodes.
static void Stop(void)
Tell the Simulator the calling event should be the last one executed.
static void Destroy(void)
Execute the events scheduled with ScheduleDestroy().
static EventId Schedule(Time const &delay, FUNC f, Ts &&... args)
Schedule an event to expire after delay.
static void Run(void)
Run the simulation.
static Time Now(void)
Return the current simulation virtual time.
The IEEE 802.11 SSID Information Element.
AttributeValue implementation for Ssid.
Simulation virtual time values and global simulation resolution.
double GetSeconds(void) const
Get an approximation of the time stored in this instance in the indicated unit.
AttributeValue implementation for Time.
Hold an unsigned integer type.
helps to create WifiNetDevice objects
create MAC layers for a ns3::WifiNetDevice.
void SetType(std::string type, Args &&... args)
represent a single transmission mode
uint64_t GetDataRate(uint16_t channelWidth, uint16_t guardInterval, uint8_t nss) const
Ptr< WifiMac > GetMac(void) const
Ptr< WifiPhy > GetPhy(void) const
void Set(std::string name, const AttributeValue &v)
This class mimics the TXVECTOR which is to be passed to the PHY in order to define the parameters whi...
void SetChannelWidth(uint16_t channelWidth)
Sets the selected channelWidth (in MHz)
void SetMode(WifiMode mode)
Sets the selected payload transmission mode.
void SetPreambleType(WifiPreamble preamble)
Sets the preamble type.
manage and create wifi channel objects for the YANS model.
Ptr< YansWifiChannel > Create(void) const
static YansWifiChannelHelper Default(void)
Create a channel helper in a default working state.
Make it easy to create and manage PHY objects for the YANS model.
void SetChannel(Ptr< YansWifiChannel > channel)
#define NS_ASSERT(condition)
At runtime, in debugging builds, if this condition is not true, the program prints the source file,...
void Connect(std::string path, const CallbackBase &cb)
#define NS_LOG_UNCOND(msg)
Output the requested message unconditionally.
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
#define NS_LOG_DEBUG(msg)
Use NS_LOG to output a message of level LOG_DEBUG.
#define NS_LOG_INFO(msg)
Use NS_LOG to output a message of level LOG_INFO.
void(* DataRate)(DataRate oldValue, DataRate newValue)
TracedValue callback signature for DataRate.
Time MicroSeconds(uint64_t value)
Construct a Time in the indicated unit.
Time Seconds(double value)
Construct a Time in the indicated unit.
Every class exported by the ns3 library is enclosed in the ns3 namespace.
Callback< R, Ts... > MakeCallback(R(T::*memPtr)(Ts...), OBJ objPtr)
Build Callbacks for class method members which take varying numbers of arguments and potentially retu...
Structure to classify a packet.
Ipv4Address sourceAddress
Source address.
Ipv4Address destinationAddress
Destination address.
WifiPhyState
The state of the PHY layer.
@ CCA_BUSY
The PHY layer has sense the medium busy through the CCA mechanism.
@ RX
The PHY layer is receiving a packet.
@ TX
The PHY layer is sending a packet.
@ IDLE
The PHY layer is IDLE.
void RateCallback(std::string path, DataRate oldRate, DataRate newRate, Mac48Address dest)
static const uint32_t packetSize
void PowerCallback(std::string path, double oldPower, double newPower, Mac48Address dest)