A Discrete-Event Network Simulator
API
pf-ff-mac-scheduler.cc
Go to the documentation of this file.
1 /* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
2 /*
3  * Copyright (c) 2011 Centre Tecnologic de Telecomunicacions de Catalunya (CTTC)
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation;
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Author: Marco Miozzo <marco.miozzo@cttc.es>
19  */
20 
21 #include <ns3/log.h>
22 #include <ns3/pointer.h>
23 #include <ns3/math.h>
24 
25 #include <ns3/simulator.h>
26 #include <ns3/lte-amc.h>
27 #include <ns3/pf-ff-mac-scheduler.h>
28 #include <ns3/lte-vendor-specific-parameters.h>
29 #include <ns3/boolean.h>
30 #include <cfloat>
31 #include <set>
32 
33 
34 namespace ns3 {
35 
36 NS_LOG_COMPONENT_DEFINE ("PfFfMacScheduler");
37 
39 static const int PfType0AllocationRbg[4] = {
40  10, // RGB size 1
41  26, // RGB size 2
42  63, // RGB size 3
43  110 // RGB size 4
44 }; // see table 7.1.6.1-1 of 36.213
45 
46 
47 NS_OBJECT_ENSURE_REGISTERED (PfFfMacScheduler);
48 
49 
50 
52  : m_cschedSapUser (0),
53  m_schedSapUser (0),
54  m_timeWindow (99.0),
55  m_nextRntiUl (0)
56 {
57  m_amc = CreateObject <LteAmc> ();
60  m_ffrSapProvider = 0;
62 }
63 
65 {
66  NS_LOG_FUNCTION (this);
67 }
68 
69 void
71 {
72  NS_LOG_FUNCTION (this);
74  m_dlHarqProcessesTimer.clear ();
76  m_dlInfoListBuffered.clear ();
77  m_ulHarqCurrentProcessId.clear ();
78  m_ulHarqProcessesStatus.clear ();
80  delete m_cschedSapProvider;
81  delete m_schedSapProvider;
82  delete m_ffrSapUser;
83 }
84 
85 TypeId
87 {
88  static TypeId tid = TypeId ("ns3::PfFfMacScheduler")
90  .SetGroupName("Lte")
91  .AddConstructor<PfFfMacScheduler> ()
92  .AddAttribute ("CqiTimerThreshold",
93  "The number of TTIs a CQI is valid (default 1000 - 1 sec.)",
94  UintegerValue (1000),
96  MakeUintegerChecker<uint32_t> ())
97  .AddAttribute ("HarqEnabled",
98  "Activate/Deactivate the HARQ [by default is active].",
99  BooleanValue (true),
102  .AddAttribute ("UlGrantMcs",
103  "The MCS of the UL grant, must be [0..15] (default 0)",
104  UintegerValue (0),
106  MakeUintegerChecker<uint8_t> ())
107  ;
108  return tid;
109 }
110 
111 
112 
113 void
115 {
116  m_cschedSapUser = s;
117 }
118 
119 void
121 {
122  m_schedSapUser = s;
123 }
124 
127 {
128  return m_cschedSapProvider;
129 }
130 
133 {
134  return m_schedSapProvider;
135 }
136 
137 void
139 {
140  m_ffrSapProvider = s;
141 }
142 
145 {
146  return m_ffrSapUser;
147 }
148 
149 void
151 {
152  NS_LOG_FUNCTION (this);
153  // Read the subset of parameters used
154  m_cschedCellConfig = params;
157  cnf.m_result = SUCCESS;
159  return;
160 }
161 
162 void
164 {
165  NS_LOG_FUNCTION (this << " RNTI " << params.m_rnti << " txMode " << (uint16_t)params.m_transmissionMode);
166  std::map <uint16_t,uint8_t>::iterator it = m_uesTxMode.find (params.m_rnti);
167  if (it == m_uesTxMode.end ())
168  {
169  m_uesTxMode.insert (std::pair <uint16_t, double> (params.m_rnti, params.m_transmissionMode));
170  // generate HARQ buffers
171  m_dlHarqCurrentProcessId.insert (std::pair <uint16_t,uint8_t > (params.m_rnti, 0));
172  DlHarqProcessesStatus_t dlHarqPrcStatus;
173  dlHarqPrcStatus.resize (8,0);
174  m_dlHarqProcessesStatus.insert (std::pair <uint16_t, DlHarqProcessesStatus_t> (params.m_rnti, dlHarqPrcStatus));
175  DlHarqProcessesTimer_t dlHarqProcessesTimer;
176  dlHarqProcessesTimer.resize (8,0);
177  m_dlHarqProcessesTimer.insert (std::pair <uint16_t, DlHarqProcessesTimer_t> (params.m_rnti, dlHarqProcessesTimer));
178  DlHarqProcessesDciBuffer_t dlHarqdci;
179  dlHarqdci.resize (8);
180  m_dlHarqProcessesDciBuffer.insert (std::pair <uint16_t, DlHarqProcessesDciBuffer_t> (params.m_rnti, dlHarqdci));
181  DlHarqRlcPduListBuffer_t dlHarqRlcPdu;
182  dlHarqRlcPdu.resize (2);
183  dlHarqRlcPdu.at (0).resize (8);
184  dlHarqRlcPdu.at (1).resize (8);
185  m_dlHarqProcessesRlcPduListBuffer.insert (std::pair <uint16_t, DlHarqRlcPduListBuffer_t> (params.m_rnti, dlHarqRlcPdu));
186  m_ulHarqCurrentProcessId.insert (std::pair <uint16_t,uint8_t > (params.m_rnti, 0));
187  UlHarqProcessesStatus_t ulHarqPrcStatus;
188  ulHarqPrcStatus.resize (8,0);
189  m_ulHarqProcessesStatus.insert (std::pair <uint16_t, UlHarqProcessesStatus_t> (params.m_rnti, ulHarqPrcStatus));
190  UlHarqProcessesDciBuffer_t ulHarqdci;
191  ulHarqdci.resize (8);
192  m_ulHarqProcessesDciBuffer.insert (std::pair <uint16_t, UlHarqProcessesDciBuffer_t> (params.m_rnti, ulHarqdci));
193  }
194  else
195  {
196  (*it).second = params.m_transmissionMode;
197  }
198  return;
199 }
200 
201 void
203 {
204  NS_LOG_FUNCTION (this << " New LC, rnti: " << params.m_rnti);
205 
206  std::map <uint16_t, pfsFlowPerf_t>::iterator it;
207  for (uint16_t i = 0; i < params.m_logicalChannelConfigList.size (); i++)
208  {
209  it = m_flowStatsDl.find (params.m_rnti);
210 
211  if (it == m_flowStatsDl.end ())
212  {
213  pfsFlowPerf_t flowStatsDl;
214  flowStatsDl.flowStart = Simulator::Now ();
215  flowStatsDl.totalBytesTransmitted = 0;
216  flowStatsDl.lastTtiBytesTrasmitted = 0;
217  flowStatsDl.lastAveragedThroughput = 1;
218  m_flowStatsDl.insert (std::pair<uint16_t, pfsFlowPerf_t> (params.m_rnti, flowStatsDl));
219  pfsFlowPerf_t flowStatsUl;
220  flowStatsUl.flowStart = Simulator::Now ();
221  flowStatsUl.totalBytesTransmitted = 0;
222  flowStatsUl.lastTtiBytesTrasmitted = 0;
223  flowStatsUl.lastAveragedThroughput = 1;
224  m_flowStatsUl.insert (std::pair<uint16_t, pfsFlowPerf_t> (params.m_rnti, flowStatsUl));
225  }
226  }
227 
228  return;
229 }
230 
231 void
233 {
234  NS_LOG_FUNCTION (this);
235  for (uint16_t i = 0; i < params.m_logicalChannelIdentity.size (); i++)
236  {
237  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it = m_rlcBufferReq.begin ();
238  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator temp;
239  while (it!=m_rlcBufferReq.end ())
240  {
241  if (((*it).first.m_rnti == params.m_rnti) && ((*it).first.m_lcId == params.m_logicalChannelIdentity.at (i)))
242  {
243  temp = it;
244  it++;
245  m_rlcBufferReq.erase (temp);
246  }
247  else
248  {
249  it++;
250  }
251  }
252  }
253  return;
254 }
255 
256 void
258 {
259  NS_LOG_FUNCTION (this);
260 
261  m_uesTxMode.erase (params.m_rnti);
262  m_dlHarqCurrentProcessId.erase (params.m_rnti);
263  m_dlHarqProcessesStatus.erase (params.m_rnti);
264  m_dlHarqProcessesTimer.erase (params.m_rnti);
265  m_dlHarqProcessesDciBuffer.erase (params.m_rnti);
267  m_ulHarqCurrentProcessId.erase (params.m_rnti);
268  m_ulHarqProcessesStatus.erase (params.m_rnti);
269  m_ulHarqProcessesDciBuffer.erase (params.m_rnti);
270  m_flowStatsDl.erase (params.m_rnti);
271  m_flowStatsUl.erase (params.m_rnti);
272  m_ceBsrRxed.erase (params.m_rnti);
273  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it = m_rlcBufferReq.begin ();
274  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator temp;
275  while (it!=m_rlcBufferReq.end ())
276  {
277  if ((*it).first.m_rnti == params.m_rnti)
278  {
279  temp = it;
280  it++;
281  m_rlcBufferReq.erase (temp);
282  }
283  else
284  {
285  it++;
286  }
287  }
288  if (m_nextRntiUl == params.m_rnti)
289  {
290  m_nextRntiUl = 0;
291  }
292 
293  return;
294 }
295 
296 
297 void
299 {
300  NS_LOG_FUNCTION (this << params.m_rnti << (uint32_t) params.m_logicalChannelIdentity);
301  // API generated by RLC for updating RLC parameters on a LC (tx and retx queues)
302 
303  std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
304 
305  LteFlowId_t flow (params.m_rnti, params.m_logicalChannelIdentity);
306 
307  it = m_rlcBufferReq.find (flow);
308 
309  if (it == m_rlcBufferReq.end ())
310  {
311  m_rlcBufferReq.insert (std::pair <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters> (flow, params));
312  }
313  else
314  {
315  (*it).second = params;
316  }
317 
318  return;
319 }
320 
321 void
323 {
324  NS_LOG_FUNCTION (this);
325  NS_FATAL_ERROR ("method not implemented");
326  return;
327 }
328 
329 void
331 {
332  NS_LOG_FUNCTION (this);
333  NS_FATAL_ERROR ("method not implemented");
334  return;
335 }
336 
337 int
339 {
340  for (int i = 0; i < 4; i++)
341  {
342  if (dlbandwidth < PfType0AllocationRbg[i])
343  {
344  return (i + 1);
345  }
346  }
347 
348  return (-1);
349 }
350 
351 
352 unsigned int
354 {
355  std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
356  unsigned int lcActive = 0;
357  for (it = m_rlcBufferReq.begin (); it != m_rlcBufferReq.end (); it++)
358  {
359  if (((*it).first.m_rnti == rnti) && (((*it).second.m_rlcTransmissionQueueSize > 0)
360  || ((*it).second.m_rlcRetransmissionQueueSize > 0)
361  || ((*it).second.m_rlcStatusPduSize > 0) ))
362  {
363  lcActive++;
364  }
365  if ((*it).first.m_rnti > rnti)
366  {
367  break;
368  }
369  }
370  return (lcActive);
371 
372 }
373 
374 
375 uint8_t
377 {
378  NS_LOG_FUNCTION (this << rnti);
379 
380  std::map <uint16_t, uint8_t>::iterator it = m_dlHarqCurrentProcessId.find (rnti);
381  if (it == m_dlHarqCurrentProcessId.end ())
382  {
383  NS_FATAL_ERROR ("No Process Id found for this RNTI " << rnti);
384  }
385  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator itStat = m_dlHarqProcessesStatus.find (rnti);
386  if (itStat == m_dlHarqProcessesStatus.end ())
387  {
388  NS_FATAL_ERROR ("No Process Id Statusfound for this RNTI " << rnti);
389  }
390  uint8_t i = (*it).second;
391  do
392  {
393  i = (i + 1) % HARQ_PROC_NUM;
394  }
395  while ( ((*itStat).second.at (i) != 0)&&(i != (*it).second));
396  if ((*itStat).second.at (i) == 0)
397  {
398  return (true);
399  }
400  else
401  {
402  return (false); // return a not valid harq proc id
403  }
404 }
405 
406 
407 
408 uint8_t
410 {
411  NS_LOG_FUNCTION (this << rnti);
412 
413  if (m_harqOn == false)
414  {
415  return (0);
416  }
417 
418 
419  std::map <uint16_t, uint8_t>::iterator it = m_dlHarqCurrentProcessId.find (rnti);
420  if (it == m_dlHarqCurrentProcessId.end ())
421  {
422  NS_FATAL_ERROR ("No Process Id found for this RNTI " << rnti);
423  }
424  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator itStat = m_dlHarqProcessesStatus.find (rnti);
425  if (itStat == m_dlHarqProcessesStatus.end ())
426  {
427  NS_FATAL_ERROR ("No Process Id Statusfound for this RNTI " << rnti);
428  }
429  uint8_t i = (*it).second;
430  do
431  {
432  i = (i + 1) % HARQ_PROC_NUM;
433  }
434  while ( ((*itStat).second.at (i) != 0)&&(i != (*it).second));
435  if ((*itStat).second.at (i) == 0)
436  {
437  (*it).second = i;
438  (*itStat).second.at (i) = 1;
439  }
440  else
441  {
442  NS_FATAL_ERROR ("No HARQ process available for RNTI " << rnti << " check before update with HarqProcessAvailability");
443  }
444 
445  return ((*it).second);
446 }
447 
448 
449 void
451 {
452  NS_LOG_FUNCTION (this);
453 
454  std::map <uint16_t, DlHarqProcessesTimer_t>::iterator itTimers;
455  for (itTimers = m_dlHarqProcessesTimer.begin (); itTimers != m_dlHarqProcessesTimer.end (); itTimers++)
456  {
457  for (uint16_t i = 0; i < HARQ_PROC_NUM; i++)
458  {
459  if ((*itTimers).second.at (i) == HARQ_DL_TIMEOUT)
460  {
461  // reset HARQ process
462 
463  NS_LOG_DEBUG (this << " Reset HARQ proc " << i << " for RNTI " << (*itTimers).first);
464  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator itStat = m_dlHarqProcessesStatus.find ((*itTimers).first);
465  if (itStat == m_dlHarqProcessesStatus.end ())
466  {
467  NS_FATAL_ERROR ("No Process Id Status found for this RNTI " << (*itTimers).first);
468  }
469  (*itStat).second.at (i) = 0;
470  (*itTimers).second.at (i) = 0;
471  }
472  else
473  {
474  (*itTimers).second.at (i)++;
475  }
476  }
477  }
478 
479 }
480 
481 
482 void
484 {
485  NS_LOG_FUNCTION (this << " Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf));
486  // API generated by RLC for triggering the scheduling of a DL subframe
487 
488 
489  // evaluate the relative channel quality indicator for each UE per each RBG
490  // (since we are using allocation type 0 the small unit of allocation is RBG)
491  // Resource allocation type 0 (see sec 7.1.6.1 of 36.213)
492 
493  RefreshDlCqiMaps ();
494 
496  int rbgNum = m_cschedCellConfig.m_dlBandwidth / rbgSize;
497  std::map <uint16_t, std::vector <uint16_t> > allocationMap; // RBs map per RNTI
498  std::vector <bool> rbgMap; // global RBGs map
499  uint16_t rbgAllocatedNum = 0;
500  std::set <uint16_t> rntiAllocated;
501  rbgMap.resize (m_cschedCellConfig.m_dlBandwidth / rbgSize, false);
502 
503  rbgMap = m_ffrSapProvider->GetAvailableDlRbg ();
504  for (std::vector<bool>::iterator it = rbgMap.begin (); it != rbgMap.end (); it++)
505  {
506  if ((*it) == true )
507  {
508  rbgAllocatedNum++;
509  }
510  }
511 
513 
514  // update UL HARQ proc id
515  std::map <uint16_t, uint8_t>::iterator itProcId;
516  for (itProcId = m_ulHarqCurrentProcessId.begin (); itProcId != m_ulHarqCurrentProcessId.end (); itProcId++)
517  {
518  (*itProcId).second = ((*itProcId).second + 1) % HARQ_PROC_NUM;
519  }
520 
521 
522  // RACH Allocation
523  uint16_t rbAllocatedNum = 0;
524  std::vector <bool> ulRbMap;
525  ulRbMap.resize (m_cschedCellConfig.m_ulBandwidth, false);
526  ulRbMap = m_ffrSapProvider->GetAvailableUlRbg ();
527  uint8_t maxContinuousUlBandwidth = 0;
528  uint8_t tmpMinBandwidth = 0;
529  uint16_t ffrRbStartOffset = 0;
530  uint16_t tmpFfrRbStartOffset = 0;
531  uint16_t index = 0;
532 
533  for (std::vector<bool>::iterator it = ulRbMap.begin (); it != ulRbMap.end (); it++)
534  {
535  if ((*it) == true )
536  {
537  rbAllocatedNum++;
538  if (tmpMinBandwidth > maxContinuousUlBandwidth)
539  {
540  maxContinuousUlBandwidth = tmpMinBandwidth;
541  ffrRbStartOffset = tmpFfrRbStartOffset;
542  }
543  tmpMinBandwidth = 0;
544  }
545  else
546  {
547  if (tmpMinBandwidth == 0)
548  {
549  tmpFfrRbStartOffset = index;
550  }
551  tmpMinBandwidth++;
552  }
553  index++;
554  }
555 
556  if (tmpMinBandwidth > maxContinuousUlBandwidth)
557  {
558  maxContinuousUlBandwidth = tmpMinBandwidth;
559  ffrRbStartOffset = tmpFfrRbStartOffset;
560  }
561 
563  uint16_t rbStart = 0;
564  rbStart = ffrRbStartOffset;
565  std::vector <struct RachListElement_s>::iterator itRach;
566  for (itRach = m_rachList.begin (); itRach != m_rachList.end (); itRach++)
567  {
568  NS_ASSERT_MSG (m_amc->GetUlTbSizeFromMcs (m_ulGrantMcs, m_cschedCellConfig.m_ulBandwidth) > (*itRach).m_estimatedSize, " Default UL Grant MCS does not allow to send RACH messages");
569  BuildRarListElement_s newRar;
570  newRar.m_rnti = (*itRach).m_rnti;
571  // DL-RACH Allocation
572  // Ideal: no needs of configuring m_dci
573  // UL-RACH Allocation
574  newRar.m_grant.m_rnti = newRar.m_rnti;
575  newRar.m_grant.m_mcs = m_ulGrantMcs;
576  uint16_t rbLen = 1;
577  uint16_t tbSizeBits = 0;
578  // find lowest TB size that fits UL grant estimated size
579  while ((tbSizeBits < (*itRach).m_estimatedSize) && (rbStart + rbLen < (ffrRbStartOffset + maxContinuousUlBandwidth)))
580  {
581  rbLen++;
582  tbSizeBits = m_amc->GetUlTbSizeFromMcs (m_ulGrantMcs, rbLen);
583  }
584  if (tbSizeBits < (*itRach).m_estimatedSize)
585  {
586  // no more allocation space: finish allocation
587  break;
588  }
589  newRar.m_grant.m_rbStart = rbStart;
590  newRar.m_grant.m_rbLen = rbLen;
591  newRar.m_grant.m_tbSize = tbSizeBits / 8;
592  newRar.m_grant.m_hopping = false;
593  newRar.m_grant.m_tpc = 0;
594  newRar.m_grant.m_cqiRequest = false;
595  newRar.m_grant.m_ulDelay = false;
596  NS_LOG_INFO (this << " UL grant allocated to RNTI " << (*itRach).m_rnti << " rbStart " << rbStart << " rbLen " << rbLen << " MCS " << m_ulGrantMcs << " tbSize " << newRar.m_grant.m_tbSize);
597  for (uint16_t i = rbStart; i < rbStart + rbLen; i++)
598  {
599  m_rachAllocationMap.at (i) = (*itRach).m_rnti;
600  }
601 
602  if (m_harqOn == true)
603  {
604  // generate UL-DCI for HARQ retransmissions
605  UlDciListElement_s uldci;
606  uldci.m_rnti = newRar.m_rnti;
607  uldci.m_rbLen = rbLen;
608  uldci.m_rbStart = rbStart;
609  uldci.m_mcs = m_ulGrantMcs;
610  uldci.m_tbSize = tbSizeBits / 8;
611  uldci.m_ndi = 1;
612  uldci.m_cceIndex = 0;
613  uldci.m_aggrLevel = 1;
614  uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
615  uldci.m_hopping = false;
616  uldci.m_n2Dmrs = 0;
617  uldci.m_tpc = 0; // no power control
618  uldci.m_cqiRequest = false; // only period CQI at this stage
619  uldci.m_ulIndex = 0; // TDD parameter
620  uldci.m_dai = 1; // TDD parameter
621  uldci.m_freqHopping = 0;
622  uldci.m_pdcchPowerOffset = 0; // not used
623 
624  uint8_t harqId = 0;
625  std::map <uint16_t, uint8_t>::iterator itProcId;
626  itProcId = m_ulHarqCurrentProcessId.find (uldci.m_rnti);
627  if (itProcId == m_ulHarqCurrentProcessId.end ())
628  {
629  NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << uldci.m_rnti);
630  }
631  harqId = (*itProcId).second;
632  std::map <uint16_t, UlHarqProcessesDciBuffer_t>::iterator itDci = m_ulHarqProcessesDciBuffer.find (uldci.m_rnti);
633  if (itDci == m_ulHarqProcessesDciBuffer.end ())
634  {
635  NS_FATAL_ERROR ("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI " << uldci.m_rnti);
636  }
637  (*itDci).second.at (harqId) = uldci;
638  }
639 
640  rbStart = rbStart + rbLen;
641  ret.m_buildRarList.push_back (newRar);
642  }
643  m_rachList.clear ();
644 
645 
646  // Process DL HARQ feedback
648  // retrieve past HARQ retx buffered
649  if (m_dlInfoListBuffered.size () > 0)
650  {
651  if (params.m_dlInfoList.size () > 0)
652  {
653  NS_LOG_INFO (this << " Received DL-HARQ feedback");
654  m_dlInfoListBuffered.insert (m_dlInfoListBuffered.end (), params.m_dlInfoList.begin (), params.m_dlInfoList.end ());
655  }
656  }
657  else
658  {
659  if (params.m_dlInfoList.size () > 0)
660  {
662  }
663  }
664  if (m_harqOn == false)
665  {
666  // Ignore HARQ feedback
667  m_dlInfoListBuffered.clear ();
668  }
669  std::vector <struct DlInfoListElement_s> dlInfoListUntxed;
670  for (uint16_t i = 0; i < m_dlInfoListBuffered.size (); i++)
671  {
672  std::set <uint16_t>::iterator itRnti = rntiAllocated.find (m_dlInfoListBuffered.at (i).m_rnti);
673  if (itRnti != rntiAllocated.end ())
674  {
675  // RNTI already allocated for retx
676  continue;
677  }
678  uint8_t nLayers = m_dlInfoListBuffered.at (i).m_harqStatus.size ();
679  std::vector <bool> retx;
680  NS_LOG_INFO (this << " Processing DLHARQ feedback");
681  if (nLayers == 1)
682  {
683  retx.push_back (m_dlInfoListBuffered.at (i).m_harqStatus.at (0) == DlInfoListElement_s::NACK);
684  retx.push_back (false);
685  }
686  else
687  {
688  retx.push_back (m_dlInfoListBuffered.at (i).m_harqStatus.at (0) == DlInfoListElement_s::NACK);
689  retx.push_back (m_dlInfoListBuffered.at (i).m_harqStatus.at (1) == DlInfoListElement_s::NACK);
690  }
691  if (retx.at (0) || retx.at (1))
692  {
693  // retrieve HARQ process information
694  uint16_t rnti = m_dlInfoListBuffered.at (i).m_rnti;
695  uint8_t harqId = m_dlInfoListBuffered.at (i).m_harqProcessId;
696  NS_LOG_INFO (this << " HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId);
697  std::map <uint16_t, DlHarqProcessesDciBuffer_t>::iterator itHarq = m_dlHarqProcessesDciBuffer.find (rnti);
698  if (itHarq == m_dlHarqProcessesDciBuffer.end ())
699  {
700  NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << rnti);
701  }
702 
703  DlDciListElement_s dci = (*itHarq).second.at (harqId);
704  int rv = 0;
705  if (dci.m_rv.size () == 1)
706  {
707  rv = dci.m_rv.at (0);
708  }
709  else
710  {
711  rv = (dci.m_rv.at (0) > dci.m_rv.at (1) ? dci.m_rv.at (0) : dci.m_rv.at (1));
712  }
713 
714  if (rv == 3)
715  {
716  // maximum number of retx reached -> drop process
717  NS_LOG_INFO ("Maximum number of retransmissions reached -> drop process");
718  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator it = m_dlHarqProcessesStatus.find (rnti);
719  if (it == m_dlHarqProcessesStatus.end ())
720  {
721  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << m_dlInfoListBuffered.at (i).m_rnti);
722  }
723  (*it).second.at (harqId) = 0;
724  std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find (rnti);
725  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
726  {
727  NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << m_dlInfoListBuffered.at (i).m_rnti);
728  }
729  for (uint16_t k = 0; k < (*itRlcPdu).second.size (); k++)
730  {
731  (*itRlcPdu).second.at (k).at (harqId).clear ();
732  }
733  continue;
734  }
735  // check the feasibility of retransmitting on the same RBGs
736  // translate the DCI to Spectrum framework
737  std::vector <int> dciRbg;
738  uint32_t mask = 0x1;
739  NS_LOG_INFO ("Original RBGs " << dci.m_rbBitmap << " rnti " << dci.m_rnti);
740  for (int j = 0; j < 32; j++)
741  {
742  if (((dci.m_rbBitmap & mask) >> j) == 1)
743  {
744  dciRbg.push_back (j);
745  NS_LOG_INFO ("\t" << j);
746  }
747  mask = (mask << 1);
748  }
749  bool free = true;
750  for (uint8_t j = 0; j < dciRbg.size (); j++)
751  {
752  if (rbgMap.at (dciRbg.at (j)) == true)
753  {
754  free = false;
755  break;
756  }
757  }
758  if (free)
759  {
760  // use the same RBGs for the retx
761  // reserve RBGs
762  for (uint8_t j = 0; j < dciRbg.size (); j++)
763  {
764  rbgMap.at (dciRbg.at (j)) = true;
765  NS_LOG_INFO ("RBG " << dciRbg.at (j) << " assigned");
766  rbgAllocatedNum++;
767  }
768 
769  NS_LOG_INFO (this << " Send retx in the same RBGs");
770  }
771  else
772  {
773  // find RBGs for sending HARQ retx
774  uint8_t j = 0;
775  uint8_t rbgId = (dciRbg.at (dciRbg.size () - 1) + 1) % rbgNum;
776  uint8_t startRbg = dciRbg.at (dciRbg.size () - 1);
777  std::vector <bool> rbgMapCopy = rbgMap;
778  while ((j < dciRbg.size ())&&(startRbg != rbgId))
779  {
780  if (rbgMapCopy.at (rbgId) == false)
781  {
782  rbgMapCopy.at (rbgId) = true;
783  dciRbg.at (j) = rbgId;
784  j++;
785  }
786  rbgId = (rbgId + 1) % rbgNum;
787  }
788  if (j == dciRbg.size ())
789  {
790  // find new RBGs -> update DCI map
791  uint32_t rbgMask = 0;
792  for (uint16_t k = 0; k < dciRbg.size (); k++)
793  {
794  rbgMask = rbgMask + (0x1 << dciRbg.at (k));
795  rbgAllocatedNum++;
796  }
797  dci.m_rbBitmap = rbgMask;
798  rbgMap = rbgMapCopy;
799  NS_LOG_INFO (this << " Move retx in RBGs " << dciRbg.size ());
800  }
801  else
802  {
803  // HARQ retx cannot be performed on this TTI -> store it
804  dlInfoListUntxed.push_back (m_dlInfoListBuffered.at (i));
805  NS_LOG_INFO (this << " No resource for this retx -> buffer it");
806  }
807  }
808  // retrieve RLC PDU list for retx TBsize and update DCI
810  std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find (rnti);
811  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
812  {
813  NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << rnti);
814  }
815  for (uint8_t j = 0; j < nLayers; j++)
816  {
817  if (retx.at (j))
818  {
819  if (j >= dci.m_ndi.size ())
820  {
821  // for avoiding errors in MIMO transient phases
822  dci.m_ndi.push_back (0);
823  dci.m_rv.push_back (0);
824  dci.m_mcs.push_back (0);
825  dci.m_tbsSize.push_back (0);
826  NS_LOG_INFO (this << " layer " << (uint16_t)j << " no txed (MIMO transition)");
827  }
828  else
829  {
830  dci.m_ndi.at (j) = 0;
831  dci.m_rv.at (j)++;
832  (*itHarq).second.at (harqId).m_rv.at (j)++;
833  NS_LOG_INFO (this << " layer " << (uint16_t)j << " RV " << (uint16_t)dci.m_rv.at (j));
834  }
835  }
836  else
837  {
838  // empty TB of layer j
839  dci.m_ndi.at (j) = 0;
840  dci.m_rv.at (j) = 0;
841  dci.m_mcs.at (j) = 0;
842  dci.m_tbsSize.at (j) = 0;
843  NS_LOG_INFO (this << " layer " << (uint16_t)j << " no retx");
844  }
845  }
846  for (uint16_t k = 0; k < (*itRlcPdu).second.at (0).at (dci.m_harqProcess).size (); k++)
847  {
848  std::vector <struct RlcPduListElement_s> rlcPduListPerLc;
849  for (uint8_t j = 0; j < nLayers; j++)
850  {
851  if (retx.at (j))
852  {
853  if (j < dci.m_ndi.size ())
854  {
855  NS_LOG_INFO (" layer " << (uint16_t)j << " tb size " << dci.m_tbsSize.at (j));
856  rlcPduListPerLc.push_back ((*itRlcPdu).second.at (j).at (dci.m_harqProcess).at (k));
857  }
858  }
859  else
860  { // if no retx needed on layer j, push an RlcPduListElement_s object with m_size=0 to keep the size of rlcPduListPerLc vector = 2 in case of MIMO
861  NS_LOG_INFO (" layer " << (uint16_t)j << " tb size "<<dci.m_tbsSize.at (j));
862  RlcPduListElement_s emptyElement;
863  emptyElement.m_logicalChannelIdentity = (*itRlcPdu).second.at (j).at (dci.m_harqProcess).at (k).m_logicalChannelIdentity;
864  emptyElement.m_size = 0;
865  rlcPduListPerLc.push_back (emptyElement);
866  }
867  }
868 
869  if (rlcPduListPerLc.size () > 0)
870  {
871  newEl.m_rlcPduList.push_back (rlcPduListPerLc);
872  }
873  }
874  newEl.m_rnti = rnti;
875  newEl.m_dci = dci;
876  (*itHarq).second.at (harqId).m_rv = dci.m_rv;
877  // refresh timer
878  std::map <uint16_t, DlHarqProcessesTimer_t>::iterator itHarqTimer = m_dlHarqProcessesTimer.find (rnti);
879  if (itHarqTimer== m_dlHarqProcessesTimer.end ())
880  {
881  NS_FATAL_ERROR ("Unable to find HARQ timer for RNTI " << (uint16_t)rnti);
882  }
883  (*itHarqTimer).second.at (harqId) = 0;
884  ret.m_buildDataList.push_back (newEl);
885  rntiAllocated.insert (rnti);
886  }
887  else
888  {
889  // update HARQ process status
890  NS_LOG_INFO (this << " HARQ received ACK for UE " << m_dlInfoListBuffered.at (i).m_rnti);
891  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator it = m_dlHarqProcessesStatus.find (m_dlInfoListBuffered.at (i).m_rnti);
892  if (it == m_dlHarqProcessesStatus.end ())
893  {
894  NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << m_dlInfoListBuffered.at (i).m_rnti);
895  }
896  (*it).second.at (m_dlInfoListBuffered.at (i).m_harqProcessId) = 0;
897  std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find (m_dlInfoListBuffered.at (i).m_rnti);
898  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
899  {
900  NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << m_dlInfoListBuffered.at (i).m_rnti);
901  }
902  for (uint16_t k = 0; k < (*itRlcPdu).second.size (); k++)
903  {
904  (*itRlcPdu).second.at (k).at (m_dlInfoListBuffered.at (i).m_harqProcessId).clear ();
905  }
906  }
907  }
908  m_dlInfoListBuffered.clear ();
909  m_dlInfoListBuffered = dlInfoListUntxed;
910 
911  if (rbgAllocatedNum == rbgNum)
912  {
913  // all the RBGs are already allocated -> exit
914  if ((ret.m_buildDataList.size () > 0) || (ret.m_buildRarList.size () > 0))
915  {
917  }
918  return;
919  }
920 
921 
922 
923  for (int i = 0; i < rbgNum; i++)
924  {
925  NS_LOG_INFO (this << " ALLOCATION for RBG " << i << " of " << rbgNum);
926  if (rbgMap.at (i) == false)
927  {
928  std::map <uint16_t, pfsFlowPerf_t>::iterator it;
929  std::map <uint16_t, pfsFlowPerf_t>::iterator itMax = m_flowStatsDl.end ();
930  double rcqiMax = 0.0;
931  for (it = m_flowStatsDl.begin (); it != m_flowStatsDl.end (); it++)
932  {
933  if ((m_ffrSapProvider->IsDlRbgAvailableForUe (i, (*it).first)) == false)
934  continue;
935 
936  std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*it).first);
937  if ((itRnti != rntiAllocated.end ())||(!HarqProcessAvailability ((*it).first)))
938  {
939  // UE already allocated for HARQ or without HARQ process available -> drop it
940  if (itRnti != rntiAllocated.end ())
941  {
942  NS_LOG_DEBUG (this << " RNTI discared for HARQ tx" << (uint16_t)(*it).first);
943  }
944  if (!HarqProcessAvailability ((*it).first))
945  {
946  NS_LOG_DEBUG (this << " RNTI discared for HARQ id" << (uint16_t)(*it).first);
947  }
948  continue;
949  }
950  std::map <uint16_t,SbMeasResult_s>::iterator itCqi;
951  itCqi = m_a30CqiRxed.find ((*it).first);
952  std::map <uint16_t,uint8_t>::iterator itTxMode;
953  itTxMode = m_uesTxMode.find ((*it).first);
954  if (itTxMode == m_uesTxMode.end ())
955  {
956  NS_FATAL_ERROR ("No Transmission Mode info on user " << (*it).first);
957  }
958  int nLayer = TransmissionModesLayers::TxMode2LayerNum ((*itTxMode).second);
959  std::vector <uint8_t> sbCqi;
960  if (itCqi == m_a30CqiRxed.end ())
961  {
962  for (uint8_t k = 0; k < nLayer; k++)
963  {
964  sbCqi.push_back (1); // start with lowest value
965  }
966  }
967  else
968  {
969  sbCqi = (*itCqi).second.m_higherLayerSelected.at (i).m_sbCqi;
970  }
971  uint8_t cqi1 = sbCqi.at (0);
972  uint8_t cqi2 = 0;
973  if (sbCqi.size () > 1)
974  {
975  cqi2 = sbCqi.at (1);
976  }
977 
978  if ((cqi1 > 0)||(cqi2 > 0)) // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
979  {
980  if (LcActivePerFlow ((*it).first) > 0)
981  {
982  // this UE has data to transmit
983  double achievableRate = 0.0;
984  uint8_t mcs = 0;
985  for (uint8_t k = 0; k < nLayer; k++)
986  {
987  if (sbCqi.size () > k)
988  {
989  mcs = m_amc->GetMcsFromCqi (sbCqi.at (k));
990  }
991  else
992  {
993  // no info on this subband -> worst MCS
994  mcs = 0;
995  }
996  achievableRate += ((m_amc->GetDlTbSizeFromMcs (mcs, rbgSize) / 8) / 0.001); // = TB size / TTI
997  }
998 
999  double rcqi = achievableRate / (*it).second.lastAveragedThroughput;
1000  NS_LOG_INFO (this << " RNTI " << (*it).first << " MCS " << (uint32_t)mcs << " achievableRate " << achievableRate << " avgThr " << (*it).second.lastAveragedThroughput << " RCQI " << rcqi);
1001 
1002  if (rcqi > rcqiMax)
1003  {
1004  rcqiMax = rcqi;
1005  itMax = it;
1006  }
1007  }
1008  } // end if cqi
1009  } // end for m_rlcBufferReq
1010 
1011  if (itMax == m_flowStatsDl.end ())
1012  {
1013  // no UE available for this RB
1014  NS_LOG_INFO (this << " any UE found");
1015  }
1016  else
1017  {
1018  rbgMap.at (i) = true;
1019  std::map <uint16_t, std::vector <uint16_t> >::iterator itMap;
1020  itMap = allocationMap.find ((*itMax).first);
1021  if (itMap == allocationMap.end ())
1022  {
1023  // insert new element
1024  std::vector <uint16_t> tempMap;
1025  tempMap.push_back (i);
1026  allocationMap.insert (std::pair <uint16_t, std::vector <uint16_t> > ((*itMax).first, tempMap));
1027  }
1028  else
1029  {
1030  (*itMap).second.push_back (i);
1031  }
1032  NS_LOG_INFO (this << " UE assigned " << (*itMax).first);
1033  }
1034  } // end for RBG free
1035  } // end for RBGs
1036 
1037  // reset TTI stats of users
1038  std::map <uint16_t, pfsFlowPerf_t>::iterator itStats;
1039  for (itStats = m_flowStatsDl.begin (); itStats != m_flowStatsDl.end (); itStats++)
1040  {
1041  (*itStats).second.lastTtiBytesTrasmitted = 0;
1042  }
1043 
1044  // generate the transmission opportunities by grouping the RBGs of the same RNTI and
1045  // creating the correspondent DCIs
1046  std::map <uint16_t, std::vector <uint16_t> >::iterator itMap = allocationMap.begin ();
1047  while (itMap != allocationMap.end ())
1048  {
1049  // create new BuildDataListElement_s for this LC
1050  BuildDataListElement_s newEl;
1051  newEl.m_rnti = (*itMap).first;
1052  // create the DlDciListElement_s
1053  DlDciListElement_s newDci;
1054  newDci.m_rnti = (*itMap).first;
1055  newDci.m_harqProcess = UpdateHarqProcessId ((*itMap).first);
1056 
1057  uint16_t lcActives = LcActivePerFlow ((*itMap).first);
1058  NS_LOG_INFO (this << "Allocate user " << newEl.m_rnti << " rbg " << lcActives);
1059  if (lcActives == 0)
1060  {
1061  // Set to max value, to avoid divide by 0 below
1062  lcActives = (uint16_t)65535; // UINT16_MAX;
1063  }
1064  uint16_t RgbPerRnti = (*itMap).second.size ();
1065  std::map <uint16_t,SbMeasResult_s>::iterator itCqi;
1066  itCqi = m_a30CqiRxed.find ((*itMap).first);
1067  std::map <uint16_t,uint8_t>::iterator itTxMode;
1068  itTxMode = m_uesTxMode.find ((*itMap).first);
1069  if (itTxMode == m_uesTxMode.end ())
1070  {
1071  NS_FATAL_ERROR ("No Transmission Mode info on user " << (*itMap).first);
1072  }
1073  int nLayer = TransmissionModesLayers::TxMode2LayerNum ((*itTxMode).second);
1074  std::vector <uint8_t> worstCqi (2, 15);
1075  if (itCqi != m_a30CqiRxed.end ())
1076  {
1077  for (uint16_t k = 0; k < (*itMap).second.size (); k++)
1078  {
1079  if ((*itCqi).second.m_higherLayerSelected.size () > (*itMap).second.at (k))
1080  {
1081  NS_LOG_INFO (this << " RBG " << (*itMap).second.at (k) << " CQI " << (uint16_t)((*itCqi).second.m_higherLayerSelected.at ((*itMap).second.at (k)).m_sbCqi.at (0)) );
1082  for (uint8_t j = 0; j < nLayer; j++)
1083  {
1084  if ((*itCqi).second.m_higherLayerSelected.at ((*itMap).second.at (k)).m_sbCqi.size () > j)
1085  {
1086  if (((*itCqi).second.m_higherLayerSelected.at ((*itMap).second.at (k)).m_sbCqi.at (j)) < worstCqi.at (j))
1087  {
1088  worstCqi.at (j) = ((*itCqi).second.m_higherLayerSelected.at ((*itMap).second.at (k)).m_sbCqi.at (j));
1089  }
1090  }
1091  else
1092  {
1093  // no CQI for this layer of this suband -> worst one
1094  worstCqi.at (j) = 1;
1095  }
1096  }
1097  }
1098  else
1099  {
1100  for (uint8_t j = 0; j < nLayer; j++)
1101  {
1102  worstCqi.at (j) = 1; // try with lowest MCS in RBG with no info on channel
1103  }
1104  }
1105  }
1106  }
1107  else
1108  {
1109  for (uint8_t j = 0; j < nLayer; j++)
1110  {
1111  worstCqi.at (j) = 1; // try with lowest MCS in RBG with no info on channel
1112  }
1113  }
1114  for (uint8_t j = 0; j < nLayer; j++)
1115  {
1116  NS_LOG_INFO (this << " Layer " << (uint16_t)j << " CQI selected " << (uint16_t)worstCqi.at (j));
1117  }
1118  uint32_t bytesTxed = 0;
1119  for (uint8_t j = 0; j < nLayer; j++)
1120  {
1121  newDci.m_mcs.push_back (m_amc->GetMcsFromCqi (worstCqi.at (j)));
1122  int tbSize = (m_amc->GetDlTbSizeFromMcs (newDci.m_mcs.at (j), RgbPerRnti * rbgSize) / 8); // (size of TB in bytes according to table 7.1.7.2.1-1 of 36.213)
1123  newDci.m_tbsSize.push_back (tbSize);
1124  NS_LOG_INFO (this << " Layer " << (uint16_t)j << " MCS selected" << m_amc->GetMcsFromCqi (worstCqi.at (j)));
1125  bytesTxed += tbSize;
1126  }
1127 
1128  newDci.m_resAlloc = 0; // only allocation type 0 at this stage
1129  newDci.m_rbBitmap = 0; // TBD (32 bit bitmap see 7.1.6 of 36.213)
1130  uint32_t rbgMask = 0;
1131  for (uint16_t k = 0; k < (*itMap).second.size (); k++)
1132  {
1133  rbgMask = rbgMask + (0x1 << (*itMap).second.at (k));
1134  NS_LOG_INFO (this << " Allocated RBG " << (*itMap).second.at (k));
1135  }
1136  newDci.m_rbBitmap = rbgMask; // (32 bit bitmap see 7.1.6 of 36.213)
1137 
1138  // create the rlc PDUs -> equally divide resources among actives LCs
1139  std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator itBufReq;
1140  for (itBufReq = m_rlcBufferReq.begin (); itBufReq != m_rlcBufferReq.end (); itBufReq++)
1141  {
1142  if (((*itBufReq).first.m_rnti == (*itMap).first)
1143  && (((*itBufReq).second.m_rlcTransmissionQueueSize > 0)
1144  || ((*itBufReq).second.m_rlcRetransmissionQueueSize > 0)
1145  || ((*itBufReq).second.m_rlcStatusPduSize > 0) ))
1146  {
1147  std::vector <struct RlcPduListElement_s> newRlcPduLe;
1148  for (uint8_t j = 0; j < nLayer; j++)
1149  {
1150  RlcPduListElement_s newRlcEl;
1151  newRlcEl.m_logicalChannelIdentity = (*itBufReq).first.m_lcId;
1152  newRlcEl.m_size = newDci.m_tbsSize.at (j) / lcActives;
1153  NS_LOG_INFO (this << " LCID " << (uint32_t) newRlcEl.m_logicalChannelIdentity << " size " << newRlcEl.m_size << " layer " << (uint16_t)j);
1154  newRlcPduLe.push_back (newRlcEl);
1155  UpdateDlRlcBufferInfo (newDci.m_rnti, newRlcEl.m_logicalChannelIdentity, newRlcEl.m_size);
1156  if (m_harqOn == true)
1157  {
1158  // store RLC PDU list for HARQ
1159  std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find ((*itMap).first);
1160  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
1161  {
1162  NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << (*itMap).first);
1163  }
1164  (*itRlcPdu).second.at (j).at (newDci.m_harqProcess).push_back (newRlcEl);
1165  }
1166  }
1167  newEl.m_rlcPduList.push_back (newRlcPduLe);
1168  }
1169  if ((*itBufReq).first.m_rnti > (*itMap).first)
1170  {
1171  break;
1172  }
1173  }
1174  for (uint8_t j = 0; j < nLayer; j++)
1175  {
1176  newDci.m_ndi.push_back (1);
1177  newDci.m_rv.push_back (0);
1178  }
1179 
1180  newDci.m_tpc = m_ffrSapProvider->GetTpc ((*itMap).first);
1181 
1182  newEl.m_dci = newDci;
1183 
1184  if (m_harqOn == true)
1185  {
1186  // store DCI for HARQ
1187  std::map <uint16_t, DlHarqProcessesDciBuffer_t>::iterator itDci = m_dlHarqProcessesDciBuffer.find (newEl.m_rnti);
1188  if (itDci == m_dlHarqProcessesDciBuffer.end ())
1189  {
1190  NS_FATAL_ERROR ("Unable to find RNTI entry in DCI HARQ buffer for RNTI " << newEl.m_rnti);
1191  }
1192  (*itDci).second.at (newDci.m_harqProcess) = newDci;
1193  // refresh timer
1194  std::map <uint16_t, DlHarqProcessesTimer_t>::iterator itHarqTimer = m_dlHarqProcessesTimer.find (newEl.m_rnti);
1195  if (itHarqTimer== m_dlHarqProcessesTimer.end ())
1196  {
1197  NS_FATAL_ERROR ("Unable to find HARQ timer for RNTI " << (uint16_t)newEl.m_rnti);
1198  }
1199  (*itHarqTimer).second.at (newDci.m_harqProcess) = 0;
1200  }
1201 
1202  // ...more parameters -> ignored in this version
1203 
1204  ret.m_buildDataList.push_back (newEl);
1205  // update UE stats
1206  std::map <uint16_t, pfsFlowPerf_t>::iterator it;
1207  it = m_flowStatsDl.find ((*itMap).first);
1208  if (it != m_flowStatsDl.end ())
1209  {
1210  (*it).second.lastTtiBytesTrasmitted = bytesTxed;
1211  NS_LOG_INFO (this << " UE total bytes txed " << (*it).second.lastTtiBytesTrasmitted);
1212 
1213 
1214  }
1215  else
1216  {
1217  NS_FATAL_ERROR (this << " No Stats for this allocated UE");
1218  }
1219 
1220  itMap++;
1221  } // end while allocation
1222  ret.m_nrOfPdcchOfdmSymbols = 1;
1223 
1224 
1225  // update UEs stats
1226  NS_LOG_INFO (this << " Update UEs statistics");
1227  for (itStats = m_flowStatsDl.begin (); itStats != m_flowStatsDl.end (); itStats++)
1228  {
1229  (*itStats).second.totalBytesTransmitted += (*itStats).second.lastTtiBytesTrasmitted;
1230  // update average throughput (see eq. 12.3 of Sec 12.3.1.2 of LTE – The UMTS Long Term Evolution, Ed Wiley)
1231  (*itStats).second.lastAveragedThroughput = ((1.0 - (1.0 / m_timeWindow)) * (*itStats).second.lastAveragedThroughput) + ((1.0 / m_timeWindow) * (double)((*itStats).second.lastTtiBytesTrasmitted / 0.001));
1232  NS_LOG_INFO (this << " UE total bytes " << (*itStats).second.totalBytesTransmitted);
1233  NS_LOG_INFO (this << " UE average throughput " << (*itStats).second.lastAveragedThroughput);
1234  (*itStats).second.lastTtiBytesTrasmitted = 0;
1235  }
1236 
1238 
1239 
1240  return;
1241 }
1242 
1243 void
1245 {
1246  NS_LOG_FUNCTION (this);
1247 
1248  m_rachList = params.m_rachList;
1249 
1250  return;
1251 }
1252 
1253 void
1255 {
1256  NS_LOG_FUNCTION (this);
1258 
1259  for (unsigned int i = 0; i < params.m_cqiList.size (); i++)
1260  {
1261  if ( params.m_cqiList.at (i).m_cqiType == CqiListElement_s::P10 )
1262  {
1263  NS_LOG_LOGIC ("wideband CQI " << (uint32_t) params.m_cqiList.at (i).m_wbCqi.at (0) << " reported");
1264  std::map <uint16_t,uint8_t>::iterator it;
1265  uint16_t rnti = params.m_cqiList.at (i).m_rnti;
1266  it = m_p10CqiRxed.find (rnti);
1267  if (it == m_p10CqiRxed.end ())
1268  {
1269  // create the new entry
1270  m_p10CqiRxed.insert ( std::pair<uint16_t, uint8_t > (rnti, params.m_cqiList.at (i).m_wbCqi.at (0)) ); // only codeword 0 at this stage (SISO)
1271  // generate correspondent timer
1272  m_p10CqiTimers.insert ( std::pair<uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
1273  }
1274  else
1275  {
1276  // update the CQI value and refresh correspondent timer
1277  (*it).second = params.m_cqiList.at (i).m_wbCqi.at (0);
1278  // update correspondent timer
1279  std::map <uint16_t,uint32_t>::iterator itTimers;
1280  itTimers = m_p10CqiTimers.find (rnti);
1281  (*itTimers).second = m_cqiTimersThreshold;
1282  }
1283  }
1284  else if ( params.m_cqiList.at (i).m_cqiType == CqiListElement_s::A30 )
1285  {
1286  // subband CQI reporting high layer configured
1287  std::map <uint16_t,SbMeasResult_s>::iterator it;
1288  uint16_t rnti = params.m_cqiList.at (i).m_rnti;
1289  it = m_a30CqiRxed.find (rnti);
1290  if (it == m_a30CqiRxed.end ())
1291  {
1292  // create the new entry
1293  m_a30CqiRxed.insert ( std::pair<uint16_t, SbMeasResult_s > (rnti, params.m_cqiList.at (i).m_sbMeasResult) );
1294  m_a30CqiTimers.insert ( std::pair<uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
1295  }
1296  else
1297  {
1298  // update the CQI value and refresh correspondent timer
1299  (*it).second = params.m_cqiList.at (i).m_sbMeasResult;
1300  std::map <uint16_t,uint32_t>::iterator itTimers;
1301  itTimers = m_a30CqiTimers.find (rnti);
1302  (*itTimers).second = m_cqiTimersThreshold;
1303  }
1304  }
1305  else
1306  {
1307  NS_LOG_ERROR (this << " CQI type unknown");
1308  }
1309  }
1310 
1311  return;
1312 }
1313 
1314 
1315 double
1316 PfFfMacScheduler::EstimateUlSinr (uint16_t rnti, uint16_t rb)
1317 {
1318  std::map <uint16_t, std::vector <double> >::iterator itCqi = m_ueCqi.find (rnti);
1319  if (itCqi == m_ueCqi.end ())
1320  {
1321  // no cqi info about this UE
1322  return (NO_SINR);
1323 
1324  }
1325  else
1326  {
1327  // take the average SINR value among the available
1328  double sinrSum = 0;
1329  unsigned int sinrNum = 0;
1330  for (uint32_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1331  {
1332  double sinr = (*itCqi).second.at (i);
1333  if (sinr != NO_SINR)
1334  {
1335  sinrSum += sinr;
1336  sinrNum++;
1337  }
1338  }
1339  double estimatedSinr = (sinrNum > 0) ? (sinrSum / sinrNum) : DBL_MAX;
1340  // store the value
1341  (*itCqi).second.at (rb) = estimatedSinr;
1342  return (estimatedSinr);
1343  }
1344 }
1345 
1346 void
1348 {
1349  NS_LOG_FUNCTION (this << " UL - Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf) << " size " << params.m_ulInfoList.size ());
1350 
1351  RefreshUlCqiMaps ();
1353 
1354  // Generate RBs map
1356  std::vector <bool> rbMap;
1357  uint16_t rbAllocatedNum = 0;
1358  std::set <uint16_t> rntiAllocated;
1359  std::vector <uint16_t> rbgAllocationMap;
1360  // update with RACH allocation map
1361  rbgAllocationMap = m_rachAllocationMap;
1362  //rbgAllocationMap.resize (m_cschedCellConfig.m_ulBandwidth, 0);
1363  m_rachAllocationMap.clear ();
1365 
1366  rbMap.resize (m_cschedCellConfig.m_ulBandwidth, false);
1367  rbMap = m_ffrSapProvider->GetAvailableUlRbg ();
1368 
1369  for (std::vector<bool>::iterator it = rbMap.begin (); it != rbMap.end (); it++)
1370  {
1371  if ((*it) == true )
1372  {
1373  rbAllocatedNum++;
1374  }
1375  }
1376 
1377  uint8_t minContinuousUlBandwidth = m_ffrSapProvider->GetMinContinuousUlBandwidth ();
1378  uint8_t ffrUlBandwidth = m_cschedCellConfig.m_ulBandwidth - rbAllocatedNum;
1379 
1380  // remove RACH allocation
1381  for (uint16_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1382  {
1383  if (rbgAllocationMap.at (i) != 0)
1384  {
1385  rbMap.at (i) = true;
1386  NS_LOG_DEBUG (this << " Allocated for RACH " << i);
1387  }
1388  }
1389 
1390 
1391  if (m_harqOn == true)
1392  {
1393  // Process UL HARQ feedback
1394 
1395  for (uint16_t i = 0; i < params.m_ulInfoList.size (); i++)
1396  {
1397  if (params.m_ulInfoList.at (i).m_receptionStatus == UlInfoListElement_s::NotOk)
1398  {
1399  // retx correspondent block: retrieve the UL-DCI
1400  uint16_t rnti = params.m_ulInfoList.at (i).m_rnti;
1401  std::map <uint16_t, uint8_t>::iterator itProcId = m_ulHarqCurrentProcessId.find (rnti);
1402  if (itProcId == m_ulHarqCurrentProcessId.end ())
1403  {
1404  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1405  }
1406  uint8_t harqId = (uint8_t)((*itProcId).second - HARQ_PERIOD) % HARQ_PROC_NUM;
1407  NS_LOG_INFO (this << " UL-HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId << " i " << i << " size " << params.m_ulInfoList.size ());
1408  std::map <uint16_t, UlHarqProcessesDciBuffer_t>::iterator itHarq = m_ulHarqProcessesDciBuffer.find (rnti);
1409  if (itHarq == m_ulHarqProcessesDciBuffer.end ())
1410  {
1411  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1412  continue;
1413  }
1414  UlDciListElement_s dci = (*itHarq).second.at (harqId);
1415  std::map <uint16_t, UlHarqProcessesStatus_t>::iterator itStat = m_ulHarqProcessesStatus.find (rnti);
1416  if (itStat == m_ulHarqProcessesStatus.end ())
1417  {
1418  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1419  }
1420  if ((*itStat).second.at (harqId) >= 3)
1421  {
1422  NS_LOG_INFO ("Max number of retransmissions reached (UL)-> drop process");
1423  continue;
1424  }
1425  bool free = true;
1426  for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1427  {
1428  if (rbMap.at (j) == true)
1429  {
1430  free = false;
1431  NS_LOG_INFO (this << " BUSY " << j);
1432  }
1433  }
1434  if (free)
1435  {
1436  // retx on the same RBs
1437  for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1438  {
1439  rbMap.at (j) = true;
1440  rbgAllocationMap.at (j) = dci.m_rnti;
1441  NS_LOG_INFO ("\tRB " << j);
1442  rbAllocatedNum++;
1443  }
1444  NS_LOG_INFO (this << " Send retx in the same RBs " << (uint16_t)dci.m_rbStart << " to " << dci.m_rbStart + dci.m_rbLen << " RV " << (*itStat).second.at (harqId) + 1);
1445  }
1446  else
1447  {
1448  NS_LOG_INFO ("Cannot allocate retx due to RACH allocations for UE " << rnti);
1449  continue;
1450  }
1451  dci.m_ndi = 0;
1452  // Update HARQ buffers with new HarqId
1453  (*itStat).second.at ((*itProcId).second) = (*itStat).second.at (harqId) + 1;
1454  (*itStat).second.at (harqId) = 0;
1455  (*itHarq).second.at ((*itProcId).second) = dci;
1456  ret.m_dciList.push_back (dci);
1457  rntiAllocated.insert (dci.m_rnti);
1458  }
1459  else
1460  {
1461  NS_LOG_INFO (this << " HARQ-ACK feedback from RNTI " << params.m_ulInfoList.at (i).m_rnti);
1462  }
1463  }
1464  }
1465 
1466  std::map <uint16_t,uint32_t>::iterator it;
1467  int nflows = 0;
1468 
1469  for (it = m_ceBsrRxed.begin (); it != m_ceBsrRxed.end (); it++)
1470  {
1471  std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*it).first);
1472  // select UEs with queues not empty and not yet allocated for HARQ
1473  if (((*it).second > 0)&&(itRnti == rntiAllocated.end ()))
1474  {
1475  nflows++;
1476  }
1477  }
1478 
1479  if (nflows == 0)
1480  {
1481  if (ret.m_dciList.size () > 0)
1482  {
1483  m_allocationMaps.insert (std::pair <uint16_t, std::vector <uint16_t> > (params.m_sfnSf, rbgAllocationMap));
1485  }
1486 
1487  return; // no flows to be scheduled
1488  }
1489 
1490 
1491  // Divide the remaining resources equally among the active users starting from the subsequent one served last scheduling trigger
1492  uint16_t tempRbPerFlow = (ffrUlBandwidth) / (nflows + rntiAllocated.size ());
1493  uint16_t rbPerFlow = (minContinuousUlBandwidth < tempRbPerFlow) ? minContinuousUlBandwidth : tempRbPerFlow;
1494 
1495  if (rbPerFlow < 3)
1496  {
1497  rbPerFlow = 3; // at least 3 rbg per flow (till available resource) to ensure TxOpportunity >= 7 bytes
1498  }
1499 
1500  int rbAllocated = 0;
1501 
1502  std::map <uint16_t, pfsFlowPerf_t>::iterator itStats;
1503  if (m_nextRntiUl != 0)
1504  {
1505  for (it = m_ceBsrRxed.begin (); it != m_ceBsrRxed.end (); it++)
1506  {
1507  if ((*it).first == m_nextRntiUl)
1508  {
1509  break;
1510  }
1511  }
1512  if (it == m_ceBsrRxed.end ())
1513  {
1514  NS_LOG_ERROR (this << " no user found");
1515  }
1516  }
1517  else
1518  {
1519  it = m_ceBsrRxed.begin ();
1520  m_nextRntiUl = (*it).first;
1521  }
1522  do
1523  {
1524  std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*it).first);
1525  if ((itRnti != rntiAllocated.end ())||((*it).second == 0))
1526  {
1527  // UE already allocated for UL-HARQ -> skip it
1528  NS_LOG_DEBUG (this << " UE already allocated in HARQ -> discared, RNTI " << (*it).first);
1529  it++;
1530  if (it == m_ceBsrRxed.end ())
1531  {
1532  // restart from the first
1533  it = m_ceBsrRxed.begin ();
1534  }
1535  continue;
1536  }
1537  if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1538  {
1539  // limit to physical resources last resource assignment
1540  rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1541  // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1542  if (rbPerFlow < 3)
1543  {
1544  // terminate allocation
1545  rbPerFlow = 0;
1546  }
1547  }
1548 
1549  rbAllocated = 0;
1550  UlDciListElement_s uldci;
1551  uldci.m_rnti = (*it).first;
1552  uldci.m_rbLen = rbPerFlow;
1553  bool allocated = false;
1554 
1555  while ((!allocated)&&((rbAllocated + rbPerFlow - m_cschedCellConfig.m_ulBandwidth) < 1) && (rbPerFlow != 0))
1556  {
1557  // check availability
1558  bool free = true;
1559  for (uint16_t j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1560  {
1561  if (rbMap.at (j) == true)
1562  {
1563  free = false;
1564  break;
1565  }
1566  if ((m_ffrSapProvider->IsUlRbgAvailableForUe (j, (*it).first)) == false)
1567  {
1568  free = false;
1569  break;
1570  }
1571  }
1572  if (free)
1573  {
1574  NS_LOG_INFO (this << "RNTI: "<< (*it).first<< " RB Allocated " << rbAllocated << " rbPerFlow " << rbPerFlow << " flows " << nflows);
1575  uldci.m_rbStart = rbAllocated;
1576 
1577  for (uint16_t j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1578  {
1579  rbMap.at (j) = true;
1580  // store info on allocation for managing ul-cqi interpretation
1581  rbgAllocationMap.at (j) = (*it).first;
1582  }
1583  rbAllocated += rbPerFlow;
1584  allocated = true;
1585  break;
1586  }
1587  rbAllocated++;
1588  if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1589  {
1590  // limit to physical resources last resource assignment
1591  rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1592  // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1593  if (rbPerFlow < 3)
1594  {
1595  // terminate allocation
1596  rbPerFlow = 0;
1597  }
1598  }
1599  }
1600  if (!allocated)
1601  {
1602  // unable to allocate new resource: finish scheduling
1603  m_nextRntiUl = (*it).first;
1604 // if (ret.m_dciList.size () > 0)
1605 // {
1606 // m_schedSapUser->SchedUlConfigInd (ret);
1607 // }
1608 // m_allocationMaps.insert (std::pair <uint16_t, std::vector <uint16_t> > (params.m_sfnSf, rbgAllocationMap));
1609 // return;
1610  break;
1611  }
1612 
1613 
1614 
1615  std::map <uint16_t, std::vector <double> >::iterator itCqi = m_ueCqi.find ((*it).first);
1616  int cqi = 0;
1617  if (itCqi == m_ueCqi.end ())
1618  {
1619  // no cqi info about this UE
1620  uldci.m_mcs = 0; // MCS 0 -> UL-AMC TBD
1621  }
1622  else
1623  {
1624  // take the lowest CQI value (worst RB)
1625  NS_ABORT_MSG_IF ((*itCqi).second.size() == 0, "CQI of RNTI = " << (*it).first << " has expired");
1626  double minSinr = (*itCqi).second.at (uldci.m_rbStart);
1627  if (minSinr == NO_SINR)
1628  {
1629  minSinr = EstimateUlSinr ((*it).first, uldci.m_rbStart);
1630  }
1631  for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1632  {
1633  double sinr = (*itCqi).second.at (i);
1634  if (sinr == NO_SINR)
1635  {
1636  sinr = EstimateUlSinr ((*it).first, i);
1637  }
1638  if (sinr < minSinr)
1639  {
1640  minSinr = sinr;
1641  }
1642  }
1643 
1644  // translate SINR -> cqi: WILD ACK: same as DL
1645  double s = log2 ( 1 + (
1646  std::pow (10, minSinr / 10 ) /
1647  ( (-std::log (5.0 * 0.00005 )) / 1.5) ));
1648  cqi = m_amc->GetCqiFromSpectralEfficiency (s);
1649  if (cqi == 0)
1650  {
1651  it++;
1652  if (it == m_ceBsrRxed.end ())
1653  {
1654  // restart from the first
1655  it = m_ceBsrRxed.begin ();
1656  }
1657  NS_LOG_DEBUG (this << " UE discarded for CQI = 0, RNTI " << uldci.m_rnti);
1658  // remove UE from allocation map
1659  for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1660  {
1661  rbgAllocationMap.at (i) = 0;
1662  }
1663  continue; // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
1664  }
1665  uldci.m_mcs = m_amc->GetMcsFromCqi (cqi);
1666  }
1667 
1668  uldci.m_tbSize = (m_amc->GetUlTbSizeFromMcs (uldci.m_mcs, rbPerFlow) / 8);
1669  UpdateUlRlcBufferInfo (uldci.m_rnti, uldci.m_tbSize);
1670  uldci.m_ndi = 1;
1671  uldci.m_cceIndex = 0;
1672  uldci.m_aggrLevel = 1;
1673  uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
1674  uldci.m_hopping = false;
1675  uldci.m_n2Dmrs = 0;
1676  uldci.m_tpc = 0; // no power control
1677  uldci.m_cqiRequest = false; // only period CQI at this stage
1678  uldci.m_ulIndex = 0; // TDD parameter
1679  uldci.m_dai = 1; // TDD parameter
1680  uldci.m_freqHopping = 0;
1681  uldci.m_pdcchPowerOffset = 0; // not used
1682  ret.m_dciList.push_back (uldci);
1683  // store DCI for HARQ_PERIOD
1684  uint8_t harqId = 0;
1685  if (m_harqOn == true)
1686  {
1687  std::map <uint16_t, uint8_t>::iterator itProcId;
1688  itProcId = m_ulHarqCurrentProcessId.find (uldci.m_rnti);
1689  if (itProcId == m_ulHarqCurrentProcessId.end ())
1690  {
1691  NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << uldci.m_rnti);
1692  }
1693  harqId = (*itProcId).second;
1694  std::map <uint16_t, UlHarqProcessesDciBuffer_t>::iterator itDci = m_ulHarqProcessesDciBuffer.find (uldci.m_rnti);
1695  if (itDci == m_ulHarqProcessesDciBuffer.end ())
1696  {
1697  NS_FATAL_ERROR ("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI " << uldci.m_rnti);
1698  }
1699  (*itDci).second.at (harqId) = uldci;
1700  // Update HARQ process status (RV 0)
1701  std::map <uint16_t, UlHarqProcessesStatus_t>::iterator itStat = m_ulHarqProcessesStatus.find (uldci.m_rnti);
1702  if (itStat == m_ulHarqProcessesStatus.end ())
1703  {
1704  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << uldci.m_rnti);
1705  }
1706  (*itStat).second.at (harqId) = 0;
1707  }
1708 
1709  NS_LOG_INFO (this << " UE Allocation RNTI " << (*it).first << " startPRB " << (uint32_t)uldci.m_rbStart << " nPRB " << (uint32_t)uldci.m_rbLen << " CQI " << cqi << " MCS " << (uint32_t)uldci.m_mcs << " TBsize " << uldci.m_tbSize << " RbAlloc " << rbAllocated << " harqId " << (uint16_t)harqId);
1710 
1711  // update TTI UE stats
1712  itStats = m_flowStatsUl.find ((*it).first);
1713  if (itStats != m_flowStatsUl.end ())
1714  {
1715  (*itStats).second.lastTtiBytesTrasmitted = uldci.m_tbSize;
1716  }
1717  else
1718  {
1719  NS_LOG_DEBUG (this << " No Stats for this allocated UE");
1720  }
1721 
1722 
1723  it++;
1724  if (it == m_ceBsrRxed.end ())
1725  {
1726  // restart from the first
1727  it = m_ceBsrRxed.begin ();
1728  }
1729  if ((rbAllocated == m_cschedCellConfig.m_ulBandwidth) || (rbPerFlow == 0))
1730  {
1731  // Stop allocation: no more PRBs
1732  m_nextRntiUl = (*it).first;
1733  break;
1734  }
1735  }
1736  while (((*it).first != m_nextRntiUl)&&(rbPerFlow!=0));
1737 
1738 
1739  // Update global UE stats
1740  // update UEs stats
1741  for (itStats = m_flowStatsUl.begin (); itStats != m_flowStatsUl.end (); itStats++)
1742  {
1743  (*itStats).second.totalBytesTransmitted += (*itStats).second.lastTtiBytesTrasmitted;
1744  // update average throughput (see eq. 12.3 of Sec 12.3.1.2 of LTE – The UMTS Long Term Evolution, Ed Wiley)
1745  (*itStats).second.lastAveragedThroughput = ((1.0 - (1.0 / m_timeWindow)) * (*itStats).second.lastAveragedThroughput) + ((1.0 / m_timeWindow) * (double)((*itStats).second.lastTtiBytesTrasmitted / 0.001));
1746  NS_LOG_INFO (this << " UE total bytes " << (*itStats).second.totalBytesTransmitted);
1747  NS_LOG_INFO (this << " UE average throughput " << (*itStats).second.lastAveragedThroughput);
1748  (*itStats).second.lastTtiBytesTrasmitted = 0;
1749  }
1750  m_allocationMaps.insert (std::pair <uint16_t, std::vector <uint16_t> > (params.m_sfnSf, rbgAllocationMap));
1752 
1753  return;
1754 }
1755 
1756 void
1758 {
1759  NS_LOG_FUNCTION (this);
1760  return;
1761 }
1762 
1763 void
1765 {
1766  NS_LOG_FUNCTION (this);
1767  return;
1768 }
1769 
1770 void
1772 {
1773  NS_LOG_FUNCTION (this);
1774 
1775  std::map <uint16_t,uint32_t>::iterator it;
1776 
1777  for (unsigned int i = 0; i < params.m_macCeList.size (); i++)
1778  {
1779  if ( params.m_macCeList.at (i).m_macCeType == MacCeListElement_s::BSR )
1780  {
1781  // buffer status report
1782  // note that this scheduler does not differentiate the
1783  // allocation according to which LCGs have more/less bytes
1784  // to send.
1785  // Hence the BSR of different LCGs are just summed up to get
1786  // a total queue size that is used for allocation purposes.
1787 
1788  uint32_t buffer = 0;
1789  for (uint8_t lcg = 0; lcg < 4; ++lcg)
1790  {
1791  uint8_t bsrId = params.m_macCeList.at (i).m_macCeValue.m_bufferStatus.at (lcg);
1792  buffer += BufferSizeLevelBsr::BsrId2BufferSize (bsrId);
1793  }
1794 
1795  uint16_t rnti = params.m_macCeList.at (i).m_rnti;
1796  NS_LOG_LOGIC (this << "RNTI=" << rnti << " buffer=" << buffer);
1797  it = m_ceBsrRxed.find (rnti);
1798  if (it == m_ceBsrRxed.end ())
1799  {
1800  // create the new entry
1801  m_ceBsrRxed.insert ( std::pair<uint16_t, uint32_t > (rnti, buffer));
1802  }
1803  else
1804  {
1805  // update the buffer size value
1806  (*it).second = buffer;
1807  }
1808  }
1809  }
1810 
1811  return;
1812 }
1813 
1814 void
1816 {
1817  NS_LOG_FUNCTION (this);
1819 
1820 // retrieve the allocation for this subframe
1821  switch (m_ulCqiFilter)
1822  {
1824  {
1825  // filter all the CQIs that are not SRS based
1826  if (params.m_ulCqi.m_type != UlCqi_s::SRS)
1827  {
1828  return;
1829  }
1830  }
1831  break;
1833  {
1834  // filter all the CQIs that are not SRS based
1835  if (params.m_ulCqi.m_type != UlCqi_s::PUSCH)
1836  {
1837  return;
1838  }
1839  }
1840  break;
1841 
1842  default:
1843  NS_FATAL_ERROR ("Unknown UL CQI type");
1844  }
1845 
1846  switch (params.m_ulCqi.m_type)
1847  {
1848  case UlCqi_s::PUSCH:
1849  {
1850  std::map <uint16_t, std::vector <uint16_t> >::iterator itMap;
1851  std::map <uint16_t, std::vector <double> >::iterator itCqi;
1852  NS_LOG_DEBUG (this << " Collect PUSCH CQIs of Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf));
1853  itMap = m_allocationMaps.find (params.m_sfnSf);
1854  if (itMap == m_allocationMaps.end ())
1855  {
1856  return;
1857  }
1858  for (uint32_t i = 0; i < (*itMap).second.size (); i++)
1859  {
1860  // convert from fixed point notation Sxxxxxxxxxxx.xxx to double
1861  double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (i));
1862  itCqi = m_ueCqi.find ((*itMap).second.at (i));
1863  if (itCqi == m_ueCqi.end ())
1864  {
1865  // create a new entry
1866  std::vector <double> newCqi;
1867  for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1868  {
1869  if (i == j)
1870  {
1871  newCqi.push_back (sinr);
1872  }
1873  else
1874  {
1875  // initialize with NO_SINR value.
1876  newCqi.push_back (NO_SINR);
1877  }
1878 
1879  }
1880  m_ueCqi.insert (std::pair <uint16_t, std::vector <double> > ((*itMap).second.at (i), newCqi));
1881  // generate correspondent timer
1882  m_ueCqiTimers.insert (std::pair <uint16_t, uint32_t > ((*itMap).second.at (i), m_cqiTimersThreshold));
1883  }
1884  else
1885  {
1886  // update the value
1887  (*itCqi).second.at (i) = sinr;
1888  NS_LOG_DEBUG (this << " RNTI " << (*itMap).second.at (i) << " RB " << i << " SINR " << sinr);
1889  // update correspondent timer
1890  std::map <uint16_t, uint32_t>::iterator itTimers;
1891  itTimers = m_ueCqiTimers.find ((*itMap).second.at (i));
1892  (*itTimers).second = m_cqiTimersThreshold;
1893 
1894  }
1895 
1896  }
1897  // remove obsolete info on allocation
1898  m_allocationMaps.erase (itMap);
1899  }
1900  break;
1901  case UlCqi_s::SRS:
1902  {
1903  NS_LOG_DEBUG (this << " Collect SRS CQIs of Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf));
1904  // get the RNTI from vendor specific parameters
1905  uint16_t rnti = 0;
1906  NS_ASSERT (params.m_vendorSpecificList.size () > 0);
1907  for (uint16_t i = 0; i < params.m_vendorSpecificList.size (); i++)
1908  {
1909  if (params.m_vendorSpecificList.at (i).m_type == SRS_CQI_RNTI_VSP)
1910  {
1911  Ptr<SrsCqiRntiVsp> vsp = DynamicCast<SrsCqiRntiVsp> (params.m_vendorSpecificList.at (i).m_value);
1912  rnti = vsp->GetRnti ();
1913  }
1914  }
1915  std::map <uint16_t, std::vector <double> >::iterator itCqi;
1916  itCqi = m_ueCqi.find (rnti);
1917  if (itCqi == m_ueCqi.end ())
1918  {
1919  // create a new entry
1920  std::vector <double> newCqi;
1921  for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1922  {
1923  double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (j));
1924  newCqi.push_back (sinr);
1925  NS_LOG_INFO (this << " RNTI " << rnti << " new SRS-CQI for RB " << j << " value " << sinr);
1926 
1927  }
1928  m_ueCqi.insert (std::pair <uint16_t, std::vector <double> > (rnti, newCqi));
1929  // generate correspondent timer
1930  m_ueCqiTimers.insert (std::pair <uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
1931  }
1932  else
1933  {
1934  // update the values
1935  for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1936  {
1937  double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (j));
1938  (*itCqi).second.at (j) = sinr;
1939  NS_LOG_INFO (this << " RNTI " << rnti << " update SRS-CQI for RB " << j << " value " << sinr);
1940  }
1941  // update correspondent timer
1942  std::map <uint16_t, uint32_t>::iterator itTimers;
1943  itTimers = m_ueCqiTimers.find (rnti);
1944  (*itTimers).second = m_cqiTimersThreshold;
1945 
1946  }
1947 
1948 
1949  }
1950  break;
1951  case UlCqi_s::PUCCH_1:
1952  case UlCqi_s::PUCCH_2:
1953  case UlCqi_s::PRACH:
1954  {
1955  NS_FATAL_ERROR ("PfFfMacScheduler supports only PUSCH and SRS UL-CQIs");
1956  }
1957  break;
1958  default:
1959  NS_FATAL_ERROR ("Unknown type of UL-CQI");
1960  }
1961  return;
1962 }
1963 
1964 void
1966 {
1967  // refresh DL CQI P01 Map
1968  std::map <uint16_t,uint32_t>::iterator itP10 = m_p10CqiTimers.begin ();
1969  while (itP10 != m_p10CqiTimers.end ())
1970  {
1971  NS_LOG_INFO (this << " P10-CQI for user " << (*itP10).first << " is " << (uint32_t)(*itP10).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1972  if ((*itP10).second == 0)
1973  {
1974  // delete correspondent entries
1975  std::map <uint16_t,uint8_t>::iterator itMap = m_p10CqiRxed.find ((*itP10).first);
1976  NS_ASSERT_MSG (itMap != m_p10CqiRxed.end (), " Does not find CQI report for user " << (*itP10).first);
1977  NS_LOG_INFO (this << " P10-CQI expired for user " << (*itP10).first);
1978  m_p10CqiRxed.erase (itMap);
1979  std::map <uint16_t,uint32_t>::iterator temp = itP10;
1980  itP10++;
1981  m_p10CqiTimers.erase (temp);
1982  }
1983  else
1984  {
1985  (*itP10).second--;
1986  itP10++;
1987  }
1988  }
1989 
1990  // refresh DL CQI A30 Map
1991  std::map <uint16_t,uint32_t>::iterator itA30 = m_a30CqiTimers.begin ();
1992  while (itA30 != m_a30CqiTimers.end ())
1993  {
1994  NS_LOG_INFO (this << " A30-CQI for user " << (*itA30).first << " is " << (uint32_t)(*itA30).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1995  if ((*itA30).second == 0)
1996  {
1997  // delete correspondent entries
1998  std::map <uint16_t,SbMeasResult_s>::iterator itMap = m_a30CqiRxed.find ((*itA30).first);
1999  NS_ASSERT_MSG (itMap != m_a30CqiRxed.end (), " Does not find CQI report for user " << (*itA30).first);
2000  NS_LOG_INFO (this << " A30-CQI expired for user " << (*itA30).first);
2001  m_a30CqiRxed.erase (itMap);
2002  std::map <uint16_t,uint32_t>::iterator temp = itA30;
2003  itA30++;
2004  m_a30CqiTimers.erase (temp);
2005  }
2006  else
2007  {
2008  (*itA30).second--;
2009  itA30++;
2010  }
2011  }
2012 
2013  return;
2014 }
2015 
2016 
2017 void
2019 {
2020  // refresh UL CQI Map
2021  std::map <uint16_t,uint32_t>::iterator itUl = m_ueCqiTimers.begin ();
2022  while (itUl != m_ueCqiTimers.end ())
2023  {
2024  NS_LOG_INFO (this << " UL-CQI for user " << (*itUl).first << " is " << (uint32_t)(*itUl).second << " thr " << (uint32_t)m_cqiTimersThreshold);
2025  if ((*itUl).second == 0)
2026  {
2027  // delete correspondent entries
2028  std::map <uint16_t, std::vector <double> >::iterator itMap = m_ueCqi.find ((*itUl).first);
2029  NS_ASSERT_MSG (itMap != m_ueCqi.end (), " Does not find CQI report for user " << (*itUl).first);
2030  NS_LOG_INFO (this << " UL-CQI exired for user " << (*itUl).first);
2031  (*itMap).second.clear ();
2032  m_ueCqi.erase (itMap);
2033  std::map <uint16_t,uint32_t>::iterator temp = itUl;
2034  itUl++;
2035  m_ueCqiTimers.erase (temp);
2036  }
2037  else
2038  {
2039  (*itUl).second--;
2040  itUl++;
2041  }
2042  }
2043 
2044  return;
2045 }
2046 
2047 void
2048 PfFfMacScheduler::UpdateDlRlcBufferInfo (uint16_t rnti, uint8_t lcid, uint16_t size)
2049 {
2050  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
2051  LteFlowId_t flow (rnti, lcid);
2052  it = m_rlcBufferReq.find (flow);
2053  if (it != m_rlcBufferReq.end ())
2054  {
2055  NS_LOG_INFO (this << " UE " << rnti << " LC " << (uint16_t)lcid << " txqueue " << (*it).second.m_rlcTransmissionQueueSize << " retxqueue " << (*it).second.m_rlcRetransmissionQueueSize << " status " << (*it).second.m_rlcStatusPduSize << " decrease " << size);
2056  // Update queues: RLC tx order Status, ReTx, Tx
2057  // Update status queue
2058  if (((*it).second.m_rlcStatusPduSize > 0) && (size >= (*it).second.m_rlcStatusPduSize))
2059  {
2060  (*it).second.m_rlcStatusPduSize = 0;
2061  }
2062  else if (((*it).second.m_rlcRetransmissionQueueSize > 0) && (size >= (*it).second.m_rlcRetransmissionQueueSize))
2063  {
2064  (*it).second.m_rlcRetransmissionQueueSize = 0;
2065  }
2066  else if ((*it).second.m_rlcTransmissionQueueSize > 0)
2067  {
2068  uint32_t rlcOverhead;
2069  if (lcid == 1)
2070  {
2071  // for SRB1 (using RLC AM) it's better to
2072  // overestimate RLC overhead rather than
2073  // underestimate it and risk unneeded
2074  // segmentation which increases delay
2075  rlcOverhead = 4;
2076  }
2077  else
2078  {
2079  // minimum RLC overhead due to header
2080  rlcOverhead = 2;
2081  }
2082  // update transmission queue
2083  if ((*it).second.m_rlcTransmissionQueueSize <= size - rlcOverhead)
2084  {
2085  (*it).second.m_rlcTransmissionQueueSize = 0;
2086  }
2087  else
2088  {
2089  (*it).second.m_rlcTransmissionQueueSize -= size - rlcOverhead;
2090  }
2091  }
2092  }
2093  else
2094  {
2095  NS_LOG_ERROR (this << " Does not find DL RLC Buffer Report of UE " << rnti);
2096  }
2097 }
2098 
2099 void
2100 PfFfMacScheduler::UpdateUlRlcBufferInfo (uint16_t rnti, uint16_t size)
2101 {
2102 
2103  size = size - 2; // remove the minimum RLC overhead
2104  std::map <uint16_t,uint32_t>::iterator it = m_ceBsrRxed.find (rnti);
2105  if (it != m_ceBsrRxed.end ())
2106  {
2107  NS_LOG_INFO (this << " UE " << rnti << " size " << size << " BSR " << (*it).second);
2108  if ((*it).second >= size)
2109  {
2110  (*it).second -= size;
2111  }
2112  else
2113  {
2114  (*it).second = 0;
2115  }
2116  }
2117  else
2118  {
2119  NS_LOG_ERROR (this << " Does not find BSR report info of UE " << rnti);
2120  }
2121 
2122 }
2123 
2124 void
2126 {
2127  NS_LOG_FUNCTION (this << " RNTI " << rnti << " txMode " << (uint16_t)txMode);
2129  params.m_rnti = rnti;
2130  params.m_transmissionMode = txMode;
2132 }
2133 
2134 
2135 }
AttributeValue implementation for Boolean.
Definition: boolean.h:37
static uint32_t BsrId2BufferSize(uint8_t val)
Convert BSR ID to buffer size.
Definition: lte-common.cc:184
Provides the CSCHED SAP.
FfMacCschedSapUser class.
virtual void CschedUeConfigUpdateInd(const struct CschedUeConfigUpdateIndParameters &params)=0
CSCHED_UE_UPDATE_IND.
virtual void CschedUeConfigCnf(const struct CschedUeConfigCnfParameters &params)=0
CSCHED_UE_CONFIG_CNF.
Provides the SCHED SAP.
FfMacSchedSapUser class.
virtual void SchedUlConfigInd(const struct SchedUlConfigIndParameters &params)=0
SCHED_UL_CONFIG_IND.
virtual void SchedDlConfigInd(const struct SchedDlConfigIndParameters &params)=0
SCHED_DL_CONFIG_IND.
This abstract base class identifies the interface by means of which the helper object can plug on the...
UlCqiFilter_t m_ulCqiFilter
UL CQI filter.
static double fpS11dot3toDouble(uint16_t val)
Convert from fixed point S11.3 notation to double.
Definition: lte-common.cc:155
Service Access Point (SAP) offered by the Frequency Reuse algorithm instance to the MAC Scheduler ins...
Definition: lte-ffr-sap.h:40
virtual uint8_t GetTpc(uint16_t rnti)=0
GetTpc.
virtual void ReportUlCqiInfo(const struct FfMacSchedSapProvider::SchedUlCqiInfoReqParameters &params)=0
ReportUlCqiInfo.
virtual bool IsUlRbgAvailableForUe(int i, uint16_t rnti)=0
Check if UE can be served on i-th RB in UL.
virtual uint16_t GetMinContinuousUlBandwidth()=0
Get the minimum continuous Ul bandwidth.
virtual bool IsDlRbgAvailableForUe(int i, uint16_t rnti)=0
Check if UE can be served on i-th RB in DL.
virtual void ReportDlCqiInfo(const struct FfMacSchedSapProvider::SchedDlCqiInfoReqParameters &params)=0
ReportDlCqiInfo.
virtual std::vector< bool > GetAvailableUlRbg()=0
Get vector of available RB in UL for this Cell.
virtual std::vector< bool > GetAvailableDlRbg()=0
Get vector of available RBG in DL for this Cell.
Service Access Point (SAP) offered by the eNodeB RRC instance to the Frequency Reuse algorithm instan...
Definition: lte-ffr-sap.h:139
Template for the implementation of the LteFfrSapUser as a member of an owner class of type C to which...
Definition: lte-ffr-sap.h:256
Implements the SCHED SAP and CSCHED SAP for a Proportional Fair scheduler.
void RefreshHarqProcesses()
Refresh HARQ processes according to the timers.
std::map< uint16_t, uint8_t > m_dlHarqCurrentProcessId
DL HARQ current process ID.
std::map< uint16_t, uint32_t > m_ceBsrRxed
Map of UE's buffer status reports received.
FfMacCschedSapProvider::CschedCellConfigReqParameters m_cschedCellConfig
CSched cell config.
void DoSchedDlCqiInfoReq(const struct FfMacSchedSapProvider::SchedDlCqiInfoReqParameters &params)
Sched DL CQI info request.
void DoCschedUeConfigReq(const struct FfMacCschedSapProvider::CschedUeConfigReqParameters &params)
CSched UE config request.
virtual FfMacSchedSapProvider * GetFfMacSchedSapProvider()
std::map< uint16_t, DlHarqProcessesStatus_t > m_dlHarqProcessesStatus
DL HARQ process status.
double EstimateUlSinr(uint16_t rnti, uint16_t rb)
Estimate UL SINR.
std::map< uint16_t, uint32_t > m_p10CqiTimers
Map of UE's timers on DL CQI P01 received.
void TransmissionModeConfigurationUpdate(uint16_t rnti, uint8_t txMode)
transmission mode configuration update
std::map< LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters > m_rlcBufferReq
Vectors of UE's LC info.
bool m_harqOn
m_harqOn when false inhibit the HARQ mechanisms (by default active)
std::map< uint16_t, UlHarqProcessesStatus_t > m_ulHarqProcessesStatus
UL HARQ process status.
void DoSchedUlTriggerReq(const struct FfMacSchedSapProvider::SchedUlTriggerReqParameters &params)
Sched UL trigger request.
virtual void SetFfMacCschedSapUser(FfMacCschedSapUser *s)
set the user part of the FfMacCschedSap that this Scheduler will interact with.
void DoSchedUlNoiseInterferenceReq(const struct FfMacSchedSapProvider::SchedUlNoiseInterferenceReqParameters &params)
Sched UL noise interference request.
void DoCschedCellConfigReq(const struct FfMacCschedSapProvider::CschedCellConfigReqParameters &params)
CSched cell config request.
std::vector< struct RachListElement_s > m_rachList
RACH list.
void DoSchedDlRlcBufferReq(const struct FfMacSchedSapProvider::SchedDlRlcBufferReqParameters &params)
Sched DL RLC buffer request.
std::map< uint16_t, DlHarqProcessesTimer_t > m_dlHarqProcessesTimer
DL HARQ process timer.
std::map< uint16_t, DlHarqProcessesDciBuffer_t > m_dlHarqProcessesDciBuffer
DL HARQ process DCI buffer.
void DoSchedUlMacCtrlInfoReq(const struct FfMacSchedSapProvider::SchedUlMacCtrlInfoReqParameters &params)
Sched UL MAC control info request.
FfMacSchedSapProvider * m_schedSapProvider
Sched SAP provider.
std::map< uint16_t, uint32_t > m_ueCqiTimers
Map of UEs' timers on UL-CQI per RBG.
void RefreshDlCqiMaps(void)
Refresh DL CQI maps.
virtual ~PfFfMacScheduler()
Destructor.
friend class MemberCschedSapProvider< PfFfMacScheduler >
allow MemberCschedSapProvider<PfFfMacScheduler> class friend access
void UpdateUlRlcBufferInfo(uint16_t rnti, uint16_t size)
Update UL RCL buffer info.
void DoCschedUeReleaseReq(const struct FfMacCschedSapProvider::CschedUeReleaseReqParameters &params)
CSched UE release request.
void RefreshUlCqiMaps(void)
Refresh UL CQI maps.
std::map< uint16_t, DlHarqRlcPduListBuffer_t > m_dlHarqProcessesRlcPduListBuffer
DL HARQ process RLC PDU list buffer.
void DoCschedLcReleaseReq(const struct FfMacCschedSapProvider::CschedLcReleaseReqParameters &params)
CSched LC release request.
FfMacCschedSapUser * m_cschedSapUser
CSched SAP user.
unsigned int LcActivePerFlow(uint16_t rnti)
LC active per flow.
virtual LteFfrSapUser * GetLteFfrSapUser()
void DoSchedDlTriggerReq(const struct FfMacSchedSapProvider::SchedDlTriggerReqParameters &params)
Sched DL trigger request.
LteFfrSapUser * m_ffrSapUser
FFR SAP user.
void DoSchedUlSrInfoReq(const struct FfMacSchedSapProvider::SchedUlSrInfoReqParameters &params)
Sched UL SR info request.
std::map< uint16_t, uint32_t > m_a30CqiTimers
Map of UE's timers on DL CQI A30 received.
void DoSchedDlMacBufferReq(const struct FfMacSchedSapProvider::SchedDlMacBufferReqParameters &params)
Sched DL MAC buffer request.
virtual void SetFfMacSchedSapUser(FfMacSchedSapUser *s)
set the user part of the FfMacSchedSap that this Scheduler will interact with.
virtual void DoDispose(void)
Destructor implementation.
uint8_t m_ulGrantMcs
MCS for UL grant (default 0)
friend class MemberSchedSapProvider< PfFfMacScheduler >
allow MemberSchedSapProvider<PfFfMacScheduler> class friend access
std::map< uint16_t, std::vector< uint16_t > > m_allocationMaps
Map of previous allocated UE per RBG (used to retrieve info from UL-CQI)
std::map< uint16_t, std::vector< double > > m_ueCqi
Map of UEs' UL-CQI per RBG.
std::map< uint16_t, pfsFlowPerf_t > m_flowStatsDl
Map of UE statistics (per RNTI basis) in downlink.
void DoSchedDlPagingBufferReq(const struct FfMacSchedSapProvider::SchedDlPagingBufferReqParameters &params)
Sched DL paging buffer request.
static TypeId GetTypeId(void)
Get the type ID.
double m_timeWindow
time window
std::map< uint16_t, pfsFlowPerf_t > m_flowStatsUl
Map of UE statistics (per RNTI basis)
LteFfrSapProvider * m_ffrSapProvider
FFR SAP provider.
virtual FfMacCschedSapProvider * GetFfMacCschedSapProvider()
uint8_t HarqProcessAvailability(uint16_t rnti)
Return the availability of free process for the RNTI specified.
uint8_t UpdateHarqProcessId(uint16_t rnti)
Update and return a new process Id for the RNTI specified.
void UpdateDlRlcBufferInfo(uint16_t rnti, uint8_t lcid, uint16_t size)
Update DL RCL buffer info.
void DoCschedLcConfigReq(const struct FfMacCschedSapProvider::CschedLcConfigReqParameters &params)
CSched LC config request.
std::map< uint16_t, SbMeasResult_s > m_a30CqiRxed
Map of UE's DL CQI A30 received.
std::map< uint16_t, uint8_t > m_uesTxMode
txMode of the UEs
uint16_t m_nextRntiUl
RNTI of the next user to be served next scheduling in UL.
FfMacCschedSapProvider * m_cschedSapProvider
CSched SAP provider.
void DoSchedDlRachInfoReq(const struct FfMacSchedSapProvider::SchedDlRachInfoReqParameters &params)
Sched DL RACH info request.
std::map< uint16_t, uint8_t > m_p10CqiRxed
Map of UE's DL CQI P01 received.
int GetRbgSize(int dlbandwidth)
Get RBG size.
std::map< uint16_t, UlHarqProcessesDciBuffer_t > m_ulHarqProcessesDciBuffer
UL HARQ process DCI buffer.
std::map< uint16_t, uint8_t > m_ulHarqCurrentProcessId
UL HARQ current process ID.
void DoSchedUlCqiInfoReq(const struct FfMacSchedSapProvider::SchedUlCqiInfoReqParameters &params)
Sched UL CQI info request.
std::vector< uint16_t > m_rachAllocationMap
RACH allocation map.
virtual void SetLteFfrSapProvider(LteFfrSapProvider *s)
Set the Provider part of the LteFfrSap that this Scheduler will interact with.
std::vector< DlInfoListElement_s > m_dlInfoListBuffered
HARQ retx buffered.
FfMacSchedSapUser * m_schedSapUser
Sched SAP user.
Smart pointer class similar to boost::intrusive_ptr.
Definition: ptr.h:74
static Time Now(void)
Return the current simulation virtual time.
Definition: simulator.cc:195
static uint8_t TxMode2LayerNum(uint8_t txMode)
Transmit mode 2 layer number.
Definition: lte-common.cc:212
a unique identifier for an interface.
Definition: type-id.h:59
TypeId SetParent(TypeId tid)
Set the parent TypeId.
Definition: type-id.cc:922
Hold an unsigned integer type.
Definition: uinteger.h:44
#define NO_SINR
#define HARQ_PROC_NUM
#define HARQ_DL_TIMEOUT
#define NS_ASSERT(condition)
At runtime, in debugging builds, if this condition is not true, the program prints the source file,...
Definition: assert.h:67
#define NS_ASSERT_MSG(condition, message)
At runtime, in debugging builds, if this condition is not true, the program prints the message to out...
Definition: assert.h:88
Ptr< const AttributeChecker > MakeBooleanChecker(void)
Definition: boolean.cc:121
Ptr< const AttributeAccessor > MakeBooleanAccessor(T1 a1)
Create an AttributeAccessor for a class data member, or a lone class get functor or set method.
Definition: boolean.h:85
Ptr< const AttributeAccessor > MakeUintegerAccessor(T1 a1)
Create an AttributeAccessor for a class data member, or a lone class get functor or set method.
Definition: uinteger.h:45
#define NS_FATAL_ERROR(msg)
Report a fatal error with a message and terminate.
Definition: fatal-error.h:165
#define NS_ABORT_MSG_IF(cond, msg)
Abnormal program termination if a condition is true, with a message.
Definition: abort.h:108
#define NS_LOG_ERROR(msg)
Use NS_LOG to output a message of level LOG_ERROR.
Definition: log.h:257
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition: log.h:205
#define NS_LOG_DEBUG(msg)
Use NS_LOG to output a message of level LOG_DEBUG.
Definition: log.h:273
#define NS_LOG_LOGIC(msg)
Use NS_LOG to output a message of level LOG_LOGIC.
Definition: log.h:289
#define NS_LOG_FUNCTION(parameters)
If log level LOG_FUNCTION is enabled, this macro will output all input parameters separated by ",...
#define NS_LOG_INFO(msg)
Use NS_LOG to output a message of level LOG_INFO.
Definition: log.h:281
#define NS_OBJECT_ENSURE_REGISTERED(type)
Register an Object subclass with the TypeId system.
Definition: object-base.h:45
#define HARQ_PERIOD
Definition: lte-common.h:30
#define SRS_CQI_RNTI_VSP
Every class exported by the ns3 library is enclosed in the ns3 namespace.
std::vector< UlDciListElement_s > UlHarqProcessesDciBuffer_t
UL HARQ process DCI buffer vector.
static const int PfType0AllocationRbg[4]
PF type 0 allocation RBG.
std::vector< uint8_t > DlHarqProcessesTimer_t
DL HARQ process timer vector typedef.
std::vector< uint8_t > DlHarqProcessesStatus_t
DL HARQ process status vector typedef.
std::vector< RlcPduList_t > DlHarqRlcPduListBuffer_t
vector of the 8 HARQ processes per UE
@ SUCCESS
Definition: ff-mac-common.h:62
std::vector< DlDciListElement_s > DlHarqProcessesDciBuffer_t
DL HARQ process DCI buffer vector typedef.
std::vector< uint8_t > UlHarqProcessesStatus_t
UL HARQ process status vector.
See section 4.3.8 builDataListElement.
struct DlDciListElement_s m_dci
DCI.
std::vector< std::vector< struct RlcPduListElement_s > > m_rlcPduList
RLC PDU list.
See section 4.3.10 buildRARListElement.
See section 4.3.1 dlDciListElement.
Definition: ff-mac-common.h:94
std::vector< uint8_t > m_ndi
New data indicator.
uint8_t m_harqProcess
HARQ process.
uint32_t m_rbBitmap
RB bitmap.
Definition: ff-mac-common.h:96
std::vector< uint8_t > m_mcs
MCS.
uint8_t m_resAlloc
The type of resource allocation.
Definition: ff-mac-common.h:98
std::vector< uint16_t > m_tbsSize
The TBs size.
Definition: ff-mac-common.h:99
std::vector< uint8_t > m_rv
Redundancy version.
uint8_t m_tpc
Tx power control command.
Parameters of the CSCHED_LC_CONFIG_REQ primitive.
std::vector< struct LogicalChannelConfigListElement_s > m_logicalChannelConfigList
logicalChannelConfigList
Parameters of the CSCHED_LC_RELEASE_REQ primitive.
std::vector< uint8_t > m_logicalChannelIdentity
logical channel identity
Parameters of the CSCHED_UE_CONFIG_REQ primitive.
Parameters of the CSCHED_UE_RELEASE_REQ primitive.
Parameters of the CSCHED_UE_CONFIG_CNF primitive.
Parameters of the CSCHED_UE_CONFIG_UPDATE_IND primitive.
Parameters of the SCHED_DL_CQI_INFO_REQ primitive.
std::vector< struct CqiListElement_s > m_cqiList
CQI list.
Parameters of the SCHED_DL_MAC_BUFFER_REQ primitive.
Parameters of the SCHED_DL_PAGING_BUFFER_REQ primitive.
Parameters of the SCHED_DL_RACH_INFO_REQ primitive.
std::vector< struct RachListElement_s > m_rachList
RACH list.
Parameters of the SCHED_DL_TRIGGER_REQ primitive.
std::vector< struct DlInfoListElement_s > m_dlInfoList
DL info list.
Parameters of the SCHED_UL_CQI_INFO_REQ primitive.
std::vector< struct VendorSpecificListElement_s > m_vendorSpecificList
vendor specific list
Parameters of the SCHED_UL_MAC_CTRL_INFO_REQ primitive.
std::vector< struct MacCeListElement_s > m_macCeList
MAC CE list.
Parameters of the SCHED_UL_NOISE_INTERFERENCE_REQ primitive.
Parameters of the SCHED_UL_SR_INFO_REQ primitive.
Parameters of the SCHED_UL_TRIGGER_REQ primitive.
std::vector< struct UlInfoListElement_s > m_ulInfoList
UL info list.
uint8_t m_nrOfPdcchOfdmSymbols
number of PDCCH OFDM symbols
std::vector< struct BuildDataListElement_s > m_buildDataList
build data list
std::vector< struct BuildRarListElement_s > m_buildRarList
build rar list
Parameters of the SCHED_UL_CONFIG_IND primitive.
std::vector< struct UlDciListElement_s > m_dciList
DCI list.
LteFlowId structure.
Definition: lte-common.h:37
See section 4.3.9 rlcPDU_ListElement.
uint8_t m_logicalChannelIdentity
logical channel identity
std::vector< uint16_t > m_sinr
SINR.
See section 4.3.2 ulDciListElement.
int8_t m_pdcchPowerOffset
CCH power offset.
int8_t m_tpc
Tx power control command.
uint8_t m_dai
DL assignment index.
uint8_t m_cceIndex
Control Channel Element index.
uint8_t m_ulIndex
UL index.
uint8_t m_ueTxAntennaSelection
UE antenna selection.
bool m_cqiRequest
CQI request.
uint8_t m_n2Dmrs
n2 DMRS
uint8_t m_freqHopping
freq hopping
uint8_t m_aggrLevel
The aggregation level.
bool m_ulDelay
UL delay?
int8_t m_tpc
Tx power control command.
bool m_cqiRequest
CQI request?
bool m_hopping
hopping?
uint16_t m_tbSize
size
uint8_t m_rbLen
length
uint8_t m_mcs
MCS.
uint8_t m_rbStart
start
uint16_t m_rnti
RNTI.
pfsFlowPerf_t structure
unsigned long totalBytesTransmitted
total bytes transmitted
Time flowStart
flow start time
double lastAveragedThroughput
last averaged throughput
unsigned int lastTtiBytesTrasmitted
last total bytes transmitted