A Discrete-Event Network Simulator
API
lena-frequency-reuse.cc
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2014 Piotr Gawlowicz
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation;
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
16  *
17  * Author: Piotr Gawlowicz <gawlowicz.p@gmail.com>
18  *
19  */
20 
21 #include "ns3/core-module.h"
22 #include "ns3/lte-module.h"
23 #include "ns3/mobility-module.h"
24 #include "ns3/network-module.h"
25 #include <ns3/buildings-helper.h>
26 #include <ns3/log.h>
27 #include <ns3/spectrum-module.h>
28 
29 using namespace ns3;
30 
31 NS_LOG_COMPONENT_DEFINE("LenaFrequencyReuse");
32 
33 void
34 PrintGnuplottableUeListToFile(std::string filename)
35 {
36  std::ofstream outFile;
37  outFile.open(filename, std::ios_base::out | std::ios_base::trunc);
38  if (!outFile.is_open())
39  {
40  NS_LOG_ERROR("Can't open file " << filename);
41  return;
42  }
43  for (auto it = NodeList::Begin(); it != NodeList::End(); ++it)
44  {
45  Ptr<Node> node = *it;
46  int nDevs = node->GetNDevices();
47  for (int j = 0; j < nDevs; j++)
48  {
49  Ptr<LteUeNetDevice> uedev = node->GetDevice(j)->GetObject<LteUeNetDevice>();
50  if (uedev)
51  {
52  Vector pos = node->GetObject<MobilityModel>()->GetPosition();
53  outFile << "set label \"" << uedev->GetImsi() << "\" at " << pos.x << "," << pos.y
54  << " left font \"Helvetica,4\" textcolor rgb \"grey\" front point pt 1 ps "
55  "0.3 lc rgb \"grey\" offset 0,0"
56  << std::endl;
57  }
58  }
59  }
60 }
61 
62 void
63 PrintGnuplottableEnbListToFile(std::string filename)
64 {
65  std::ofstream outFile;
66  outFile.open(filename, std::ios_base::out | std::ios_base::trunc);
67  if (!outFile.is_open())
68  {
69  NS_LOG_ERROR("Can't open file " << filename);
70  return;
71  }
72  for (auto it = NodeList::Begin(); it != NodeList::End(); ++it)
73  {
74  Ptr<Node> node = *it;
75  int nDevs = node->GetNDevices();
76  for (int j = 0; j < nDevs; j++)
77  {
78  Ptr<LteEnbNetDevice> enbdev = node->GetDevice(j)->GetObject<LteEnbNetDevice>();
79  if (enbdev)
80  {
81  Vector pos = node->GetObject<MobilityModel>()->GetPosition();
82  outFile << "set label \"" << enbdev->GetCellId() << "\" at " << pos.x << ","
83  << pos.y
84  << " left font \"Helvetica,4\" textcolor rgb \"white\" front point pt 2 "
85  "ps 0.3 lc rgb \"white\" offset 0,0"
86  << std::endl;
87  }
88  }
89  }
90 }
91 
92 int
93 main(int argc, char* argv[])
94 {
95  Config::SetDefault("ns3::LteSpectrumPhy::CtrlErrorModelEnabled", BooleanValue(true));
96  Config::SetDefault("ns3::LteSpectrumPhy::DataErrorModelEnabled", BooleanValue(true));
97  Config::SetDefault("ns3::LteHelper::UseIdealRrc", BooleanValue(true));
98  Config::SetDefault("ns3::LteHelper::UsePdschForCqiGeneration", BooleanValue(true));
99 
100  // Uplink Power Control
101  Config::SetDefault("ns3::LteUePhy::EnableUplinkPowerControl", BooleanValue(true));
102  Config::SetDefault("ns3::LteUePowerControl::ClosedLoop", BooleanValue(true));
103  Config::SetDefault("ns3::LteUePowerControl::AccumulationEnabled", BooleanValue(false));
104 
105  uint32_t runId = 3;
106  uint16_t numberOfRandomUes = 0;
107  double simTime = 2.500;
108  bool generateSpectrumTrace = false;
109  bool generateRem = false;
110  int32_t remRbId = -1;
111  uint16_t bandwidth = 25;
112  double distance = 1000;
113  Box macroUeBox =
114  Box(-distance * 0.5, distance * 1.5, -distance * 0.5, distance * 1.5, 1.5, 1.5);
115 
116  // Command line arguments
117  CommandLine cmd(__FILE__);
118  cmd.AddValue("numberOfUes", "Number of random UEs", numberOfRandomUes);
119  cmd.AddValue("simTime", "Total duration of the simulation (in seconds)", simTime);
120  cmd.AddValue("generateSpectrumTrace",
121  "if true, will generate a Spectrum Analyzer trace",
122  generateSpectrumTrace);
123  cmd.AddValue("generateRem",
124  "if true, will generate a REM and then abort the simulation",
125  generateRem);
126  cmd.AddValue("remRbId",
127  "Resource Block Id, for which REM will be generated,"
128  "default value is -1, what means REM will be averaged from all RBs",
129  remRbId);
130  cmd.AddValue("runId", "runId", runId);
131  cmd.Parse(argc, argv);
132 
134  RngSeedManager::SetRun(runId);
135 
136  Ptr<LteHelper> lteHelper = CreateObject<LteHelper>();
137 
138  // Create Nodes: eNodeB and UE
139  NodeContainer enbNodes;
140  NodeContainer centerUeNodes;
141  NodeContainer edgeUeNodes;
142  NodeContainer randomUeNodes;
143  enbNodes.Create(3);
144  centerUeNodes.Create(3);
145  edgeUeNodes.Create(3);
146  randomUeNodes.Create(numberOfRandomUes);
147 
148  /* the topology is the following:
149  * eNB3
150  * / \
151  * / \
152  * / \
153  * / \
154  * distance / \ distance
155  * / UEs \
156  * / \
157  * / \
158  * / \
159  * / \
160  * eNB1-------------------------eNB2
161  * distance
162  */
163 
164  // Install Mobility Model
165  Ptr<ListPositionAllocator> enbPositionAlloc = CreateObject<ListPositionAllocator>();
166  enbPositionAlloc->Add(Vector(0.0, 0.0, 0.0)); // eNB1
167  enbPositionAlloc->Add(Vector(distance, 0.0, 0.0)); // eNB2
168  enbPositionAlloc->Add(Vector(distance * 0.5, distance * 0.866, 0.0)); // eNB3
170  mobility.SetMobilityModel("ns3::ConstantPositionMobilityModel");
171  mobility.SetPositionAllocator(enbPositionAlloc);
172  mobility.Install(enbNodes);
173 
174  Ptr<ListPositionAllocator> edgeUePositionAlloc = CreateObject<ListPositionAllocator>();
175  edgeUePositionAlloc->Add(Vector(distance * 0.5, distance * 0.28867, 0.0)); // edgeUE1
176  edgeUePositionAlloc->Add(Vector(distance * 0.5, distance * 0.28867, 0.0)); // edgeUE2
177  edgeUePositionAlloc->Add(Vector(distance * 0.5, distance * 0.28867, 0.0)); // edgeUE3
178  mobility.SetPositionAllocator(edgeUePositionAlloc);
179  mobility.Install(edgeUeNodes);
180 
181  Ptr<ListPositionAllocator> centerUePositionAlloc = CreateObject<ListPositionAllocator>();
182  centerUePositionAlloc->Add(Vector(0.0, 0.0, 0.0)); // centerUE1
183  centerUePositionAlloc->Add(Vector(distance, 0.0, 0.0)); // centerUE2
184  centerUePositionAlloc->Add(Vector(distance * 0.5, distance * 0.866, 0.0)); // centerUE3
185  mobility.SetPositionAllocator(centerUePositionAlloc);
186  mobility.Install(centerUeNodes);
187 
188  Ptr<RandomBoxPositionAllocator> randomUePositionAlloc =
189  CreateObject<RandomBoxPositionAllocator>();
190  Ptr<UniformRandomVariable> xVal = CreateObject<UniformRandomVariable>();
191  xVal->SetAttribute("Min", DoubleValue(macroUeBox.xMin));
192  xVal->SetAttribute("Max", DoubleValue(macroUeBox.xMax));
193  randomUePositionAlloc->SetAttribute("X", PointerValue(xVal));
194  Ptr<UniformRandomVariable> yVal = CreateObject<UniformRandomVariable>();
195  yVal->SetAttribute("Min", DoubleValue(macroUeBox.yMin));
196  yVal->SetAttribute("Max", DoubleValue(macroUeBox.yMax));
197  randomUePositionAlloc->SetAttribute("Y", PointerValue(yVal));
198  Ptr<UniformRandomVariable> zVal = CreateObject<UniformRandomVariable>();
199  zVal->SetAttribute("Min", DoubleValue(macroUeBox.zMin));
200  zVal->SetAttribute("Max", DoubleValue(macroUeBox.zMax));
201  randomUePositionAlloc->SetAttribute("Z", PointerValue(zVal));
202  mobility.SetPositionAllocator(randomUePositionAlloc);
203  mobility.Install(randomUeNodes);
204 
205  // Create Devices and install them in the Nodes (eNB and UE)
206  NetDeviceContainer enbDevs;
207  NetDeviceContainer edgeUeDevs;
208  NetDeviceContainer centerUeDevs;
209  NetDeviceContainer randomUeDevs;
210  lteHelper->SetSchedulerType("ns3::PfFfMacScheduler");
212  lteHelper->SetEnbDeviceAttribute("DlBandwidth", UintegerValue(bandwidth));
213  lteHelper->SetEnbDeviceAttribute("UlBandwidth", UintegerValue(bandwidth));
214 
215  std::string frAlgorithmType = lteHelper->GetFfrAlgorithmType();
216  NS_LOG_DEBUG("FrAlgorithmType: " << frAlgorithmType);
217 
218  if (frAlgorithmType == "ns3::LteFrHardAlgorithm")
219  {
220  // Nothing to configure here in automatic mode
221  }
222  else if (frAlgorithmType == "ns3::LteFrStrictAlgorithm")
223  {
224  lteHelper->SetFfrAlgorithmAttribute("RsrqThreshold", UintegerValue(32));
225  lteHelper->SetFfrAlgorithmAttribute("CenterPowerOffset",
227  lteHelper->SetFfrAlgorithmAttribute("EdgePowerOffset",
229  lteHelper->SetFfrAlgorithmAttribute("CenterAreaTpc", UintegerValue(0));
230  lteHelper->SetFfrAlgorithmAttribute("EdgeAreaTpc", UintegerValue(3));
231 
232  // ns3::LteFrStrictAlgorithm works with Absolute Mode Uplink Power Control
233  Config::SetDefault("ns3::LteUePowerControl::AccumulationEnabled", BooleanValue(false));
234  }
235  else if (frAlgorithmType == "ns3::LteFrSoftAlgorithm")
236  {
237  lteHelper->SetFfrAlgorithmAttribute("AllowCenterUeUseEdgeSubBand", BooleanValue(true));
238  lteHelper->SetFfrAlgorithmAttribute("RsrqThreshold", UintegerValue(25));
239  lteHelper->SetFfrAlgorithmAttribute("CenterPowerOffset",
241  lteHelper->SetFfrAlgorithmAttribute("EdgePowerOffset",
243  lteHelper->SetFfrAlgorithmAttribute("CenterAreaTpc", UintegerValue(0));
244  lteHelper->SetFfrAlgorithmAttribute("EdgeAreaTpc", UintegerValue(3));
245 
246  // ns3::LteFrSoftAlgorithm works with Absolute Mode Uplink Power Control
247  Config::SetDefault("ns3::LteUePowerControl::AccumulationEnabled", BooleanValue(false));
248  }
249  else if (frAlgorithmType == "ns3::LteFfrSoftAlgorithm")
250  {
251  lteHelper->SetFfrAlgorithmAttribute("CenterRsrqThreshold", UintegerValue(30));
252  lteHelper->SetFfrAlgorithmAttribute("EdgeRsrqThreshold", UintegerValue(25));
253  lteHelper->SetFfrAlgorithmAttribute("CenterAreaPowerOffset",
255  lteHelper->SetFfrAlgorithmAttribute(
256  "MediumAreaPowerOffset",
258  lteHelper->SetFfrAlgorithmAttribute("EdgeAreaPowerOffset",
260  lteHelper->SetFfrAlgorithmAttribute("CenterAreaTpc", UintegerValue(1));
261  lteHelper->SetFfrAlgorithmAttribute("MediumAreaTpc", UintegerValue(2));
262  lteHelper->SetFfrAlgorithmAttribute("EdgeAreaTpc", UintegerValue(3));
263 
264  // ns3::LteFfrSoftAlgorithm works with Absolute Mode Uplink Power Control
265  Config::SetDefault("ns3::LteUePowerControl::AccumulationEnabled", BooleanValue(false));
266  }
267  else if (frAlgorithmType == "ns3::LteFfrEnhancedAlgorithm")
268  {
269  lteHelper->SetFfrAlgorithmAttribute("RsrqThreshold", UintegerValue(25));
270  lteHelper->SetFfrAlgorithmAttribute("DlCqiThreshold", UintegerValue(10));
271  lteHelper->SetFfrAlgorithmAttribute("UlCqiThreshold", UintegerValue(10));
272  lteHelper->SetFfrAlgorithmAttribute("CenterAreaPowerOffset",
274  lteHelper->SetFfrAlgorithmAttribute("EdgeAreaPowerOffset",
276  lteHelper->SetFfrAlgorithmAttribute("CenterAreaTpc", UintegerValue(0));
277  lteHelper->SetFfrAlgorithmAttribute("EdgeAreaTpc", UintegerValue(3));
278 
279  // ns3::LteFfrEnhancedAlgorithm works with Absolute Mode Uplink Power Control
280  Config::SetDefault("ns3::LteUePowerControl::AccumulationEnabled", BooleanValue(false));
281  }
282  else if (frAlgorithmType == "ns3::LteFfrDistributedAlgorithm")
283  {
284  NS_FATAL_ERROR("ns3::LteFfrDistributedAlgorithm not supported in this example. Please run "
285  "lena-distributed-ffr");
286  }
287  else
288  {
289  lteHelper->SetFfrAlgorithmType("ns3::LteFrNoOpAlgorithm");
290  }
291 
292  lteHelper->SetFfrAlgorithmAttribute("FrCellTypeId", UintegerValue(1));
293  enbDevs.Add(lteHelper->InstallEnbDevice(enbNodes.Get(0)));
294 
295  lteHelper->SetFfrAlgorithmAttribute("FrCellTypeId", UintegerValue(2));
296  enbDevs.Add(lteHelper->InstallEnbDevice(enbNodes.Get(1)));
297 
298  lteHelper->SetFfrAlgorithmAttribute("FrCellTypeId", UintegerValue(3));
299  enbDevs.Add(lteHelper->InstallEnbDevice(enbNodes.Get(2)));
300 
301  // FR algorithm reconfiguration if needed
302  PointerValue tmp;
303  enbDevs.Get(0)->GetAttribute("LteFfrAlgorithm", tmp);
304  Ptr<LteFfrAlgorithm> ffrAlgorithm = DynamicCast<LteFfrAlgorithm>(tmp.GetObject());
305  ffrAlgorithm->SetAttribute("FrCellTypeId", UintegerValue(1));
306 
307  // Install Ue Device
308  edgeUeDevs = lteHelper->InstallUeDevice(edgeUeNodes);
309  centerUeDevs = lteHelper->InstallUeDevice(centerUeNodes);
310  randomUeDevs = lteHelper->InstallUeDevice(randomUeNodes);
311 
312  // Attach edge UEs to eNbs
313  for (uint32_t i = 0; i < edgeUeDevs.GetN(); i++)
314  {
315  lteHelper->Attach(edgeUeDevs.Get(i), enbDevs.Get(i));
316  }
317  // Attach center UEs to eNbs
318  for (uint32_t i = 0; i < centerUeDevs.GetN(); i++)
319  {
320  lteHelper->Attach(centerUeDevs.Get(i), enbDevs.Get(i));
321  }
322 
323  // Attach UE to a eNB
324  lteHelper->AttachToClosestEnb(randomUeDevs, enbDevs);
325 
326  // Activate a data radio bearer
328  EpsBearer bearer(q);
329  lteHelper->ActivateDataRadioBearer(edgeUeDevs, bearer);
330  lteHelper->ActivateDataRadioBearer(centerUeDevs, bearer);
331  lteHelper->ActivateDataRadioBearer(randomUeDevs, bearer);
332 
333  // Spectrum analyzer
334  NodeContainer spectrumAnalyzerNodes;
335  spectrumAnalyzerNodes.Create(1);
336  SpectrumAnalyzerHelper spectrumAnalyzerHelper;
337 
338  if (generateSpectrumTrace)
339  {
340  Ptr<ListPositionAllocator> positionAlloc = CreateObject<ListPositionAllocator>();
341  // position of Spectrum Analyzer
342  // positionAlloc->Add (Vector (0.0, 0.0, 0.0)); // eNB1
343  // positionAlloc->Add (Vector (distance, 0.0, 0.0)); // eNB2
344  positionAlloc->Add(Vector(distance * 0.5, distance * 0.866, 0.0)); // eNB3
345 
347  mobility.SetMobilityModel("ns3::ConstantPositionMobilityModel");
348  mobility.SetPositionAllocator(positionAlloc);
349  mobility.Install(spectrumAnalyzerNodes);
350 
351  Ptr<LteSpectrumPhy> enbDlSpectrumPhy = enbDevs.Get(0)
352  ->GetObject<LteEnbNetDevice>()
353  ->GetPhy()
354  ->GetDownlinkSpectrumPhy()
356  Ptr<SpectrumChannel> dlChannel = enbDlSpectrumPhy->GetChannel();
357 
358  spectrumAnalyzerHelper.SetChannel(dlChannel);
360  spectrumAnalyzerHelper.SetRxSpectrumModel(sm);
361  spectrumAnalyzerHelper.SetPhyAttribute("Resolution", TimeValue(MicroSeconds(10)));
362  spectrumAnalyzerHelper.SetPhyAttribute("NoisePowerSpectralDensity",
363  DoubleValue(1e-15)); // -120 dBm/Hz
364  spectrumAnalyzerHelper.EnableAsciiAll("spectrum-analyzer-output");
365  spectrumAnalyzerHelper.Install(spectrumAnalyzerNodes);
366  }
367 
369  if (generateRem)
370  {
371  PrintGnuplottableEnbListToFile("enbs.txt");
373 
374  remHelper = CreateObject<RadioEnvironmentMapHelper>();
375  remHelper->SetAttribute("ChannelPath", StringValue("/ChannelList/0"));
376  remHelper->SetAttribute("OutputFile", StringValue("lena-frequency-reuse.rem"));
377  remHelper->SetAttribute("XMin", DoubleValue(macroUeBox.xMin));
378  remHelper->SetAttribute("XMax", DoubleValue(macroUeBox.xMax));
379  remHelper->SetAttribute("YMin", DoubleValue(macroUeBox.yMin));
380  remHelper->SetAttribute("YMax", DoubleValue(macroUeBox.yMax));
381  remHelper->SetAttribute("Z", DoubleValue(1.5));
382  remHelper->SetAttribute("XRes", UintegerValue(500));
383  remHelper->SetAttribute("YRes", UintegerValue(500));
384  if (remRbId >= 0)
385  {
386  remHelper->SetAttribute("UseDataChannel", BooleanValue(true));
387  remHelper->SetAttribute("RbId", IntegerValue(remRbId));
388  }
389 
390  remHelper->Install();
391  // simulation will stop right after the REM has been generated
392  }
393  else
394  {
395  Simulator::Stop(Seconds(simTime));
396  }
397 
398  Simulator::Run();
400  return 0;
401 }
a 3d box
Definition: box.h:35
double yMax
The y coordinate of the top bound of the box.
Definition: box.h:116
double xMin
The x coordinate of the left bound of the box.
Definition: box.h:110
double yMin
The y coordinate of the bottom bound of the box.
Definition: box.h:114
double xMax
The x coordinate of the right bound of the box.
Definition: box.h:112
double zMin
The z coordinate of the down bound of the box.
Definition: box.h:118
double zMax
The z coordinate of the up bound of the box.
Definition: box.h:120
Parse command-line arguments.
Definition: command-line.h:232
This class can be used to hold variables of floating point type such as 'double' or 'float'.
Definition: double.h:42
Hold variables of type enum.
Definition: enum.h:62
This class contains the specification of EPS Bearers.
Definition: eps-bearer.h:91
Qci
QoS Class Indicator.
Definition: eps-bearer.h:106
@ GBR_CONV_VOICE
GBR Conversational Voice.
Definition: eps-bearer.h:107
Hold a signed integer type.
Definition: integer.h:45
The eNodeB device implementation.
uint16_t GetCellId() const
void SetFfrAlgorithmType(std::string type)
Set the type of FFR algorithm to be used by eNodeB devices.
Definition: lte-helper.cc:319
void SetSchedulerAttribute(std::string n, const AttributeValue &v)
Set an attribute for the scheduler to be created.
Definition: lte-helper.cc:306
NetDeviceContainer InstallEnbDevice(NodeContainer c)
Create a set of eNodeB devices.
Definition: lte-helper.cc:485
std::string GetFfrAlgorithmType() const
Definition: lte-helper.cc:313
void SetFfrAlgorithmAttribute(std::string n, const AttributeValue &v)
Set an attribute for the FFR algorithm to be created.
Definition: lte-helper.cc:327
void SetSchedulerType(std::string type)
Set the type of scheduler to be used by eNodeB devices.
Definition: lte-helper.cc:292
void Attach(NetDeviceContainer ueDevices)
Enables automatic attachment of a set of UE devices to a suitable cell using Idle mode initial cell s...
Definition: lte-helper.cc:1039
void SetEnbDeviceAttribute(std::string n, const AttributeValue &v)
Set an attribute for the eNodeB devices (LteEnbNetDevice) to be created.
Definition: lte-helper.cc:412
void ActivateDataRadioBearer(NetDeviceContainer ueDevices, EpsBearer bearer)
Activate a Data Radio Bearer on a given UE devices (for LTE-only simulation).
Definition: lte-helper.cc:1436
NetDeviceContainer InstallUeDevice(NodeContainer c)
Create a set of UE devices.
Definition: lte-helper.cc:500
void AttachToClosestEnb(NetDeviceContainer ueDevices, NetDeviceContainer enbDevices)
Manual attachment of a set of UE devices to the network via the closest eNodeB (with respect to dista...
Definition: lte-helper.cc:1122
The LteSpectrumPhy models the physical layer of LTE.
static Ptr< SpectrumModel > GetSpectrumModel(uint32_t earfcn, uint16_t bandwidth)
The LteUeNetDevice class implements the UE net device.
Helper class used to assign positions and mobility models to nodes.
Keep track of the current position and velocity of an object.
holds a vector of ns3::NetDevice pointers
uint32_t GetN() const
Get the number of Ptr<NetDevice> stored in this container.
void Add(NetDeviceContainer other)
Append the contents of another NetDeviceContainer to the end of this container.
Ptr< NetDevice > Get(uint32_t i) const
Get the Ptr<NetDevice> stored in this container at a given index.
keep track of a set of node pointers.
void Create(uint32_t n)
Create n nodes and append pointers to them to the end of this NodeContainer.
Ptr< Node > Get(uint32_t i) const
Get the Ptr<Node> stored in this container at a given index.
uint32_t GetNDevices() const
Definition: node.cc:162
Ptr< NetDevice > GetDevice(uint32_t index) const
Retrieve the index-th NetDevice associated to this node.
Definition: node.cc:152
static Iterator Begin()
Definition: node-list.cc:237
static Iterator End()
Definition: node-list.cc:244
void SetAttribute(std::string name, const AttributeValue &value)
Set a single attribute, raising fatal errors if unsuccessful.
Definition: object-base.cc:204
Ptr< T > GetObject() const
Get a pointer to the requested aggregated Object.
Definition: object.h:471
Hold objects of type Ptr<T>.
Definition: pointer.h:37
Ptr< Object > GetObject() const
Get the Object referenced by the PointerValue.
Definition: pointer.cc:57
static void SetRun(uint64_t run)
Set the run number of simulation.
static void SetSeed(uint32_t seed)
Set the seed.
static void Destroy()
Execute the events scheduled with ScheduleDestroy().
Definition: simulator.cc:142
static void Run()
Run the simulation.
Definition: simulator.cc:178
static void Stop()
Tell the Simulator the calling event should be the last one executed.
Definition: simulator.cc:186
Class to allow the Spectrum Analysis.
NetDeviceContainer Install(NodeContainer c) const
void SetPhyAttribute(std::string name, const AttributeValue &v)
void SetChannel(Ptr< SpectrumChannel > channel)
Set the SpectrumChannel that will be used by SpectrumPhy instances created by this helper.
void EnableAsciiAll(std::string prefix)
Enable ASCII output.
void SetRxSpectrumModel(Ptr< SpectrumModel > m)
Set the spectrum model used by the created SpectrumAnalyzer instances to represent incoming signals.
Hold variables of type string.
Definition: string.h:56
Hold an unsigned integer type.
Definition: uinteger.h:45
void SetDefault(std::string name, const AttributeValue &value)
Definition: config.cc:890
#define NS_FATAL_ERROR(msg)
Report a fatal error with a message and terminate.
Definition: fatal-error.h:179
#define NS_LOG_ERROR(msg)
Use NS_LOG to output a message of level LOG_ERROR.
Definition: log.h:254
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition: log.h:202
#define NS_LOG_DEBUG(msg)
Use NS_LOG to output a message of level LOG_DEBUG.
Definition: log.h:268
Time MicroSeconds(uint64_t value)
Construct a Time in the indicated unit.
Definition: nstime.h:1350
Time Seconds(double value)
Construct a Time in the indicated unit.
Definition: nstime.h:1326
void PrintGnuplottableEnbListToFile(std::string filename)
void PrintGnuplottableUeListToFile(std::string filename)
Every class exported by the ns3 library is enclosed in the ns3 namespace.
cmd
Definition: second.py:40
mobility
Definition: third.py:105