A Discrete-Event Network Simulator
API
tdtbfq-ff-mac-scheduler.cc
Go to the documentation of this file.
1 /* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
2 /*
3  * Copyright (c) 2011 Centre Tecnologic de Telecomunicacions de Catalunya (CTTC)
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation;
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Author: Marco Miozzo <marco.miozzo@cttc.es>
19  * Modification: Dizhi Zhou <dizhi.zhou@gmail.com> // modify codes related to downlink scheduler
20  */
21 
22 #include <ns3/log.h>
23 #include <ns3/pointer.h>
24 #include <ns3/math.h>
25 
26 #include <ns3/simulator.h>
27 #include <ns3/lte-amc.h>
28 #include <ns3/tdtbfq-ff-mac-scheduler.h>
29 #include <ns3/lte-vendor-specific-parameters.h>
30 #include <ns3/boolean.h>
31 #include <ns3/integer.h>
32 #include <set>
33 #include <cfloat>
34 
35 namespace ns3 {
36 
37 NS_LOG_COMPONENT_DEFINE ("TdTbfqFfMacScheduler");
38 
40 static const int TdTbfqType0AllocationRbg[4] = {
41  10, // RGB size 1
42  26, // RGB size 2
43  63, // RGB size 3
44  110 // RGB size 4
45 }; // see table 7.1.6.1-1 of 36.213
46 
47 
48 NS_OBJECT_ENSURE_REGISTERED (TdTbfqFfMacScheduler);
49 
50 
51 
53  : m_cschedSapUser (0),
54  m_schedSapUser (0),
55  m_nextRntiUl (0),
56  bankSize (0)
57 {
58  m_amc = CreateObject <LteAmc> ();
61  m_ffrSapProvider = 0;
63 }
64 
66 {
67  NS_LOG_FUNCTION (this);
68 }
69 
70 void
72 {
73  NS_LOG_FUNCTION (this);
75  m_dlHarqProcessesTimer.clear ();
77  m_dlInfoListBuffered.clear ();
78  m_ulHarqCurrentProcessId.clear ();
79  m_ulHarqProcessesStatus.clear ();
81  delete m_cschedSapProvider;
82  delete m_schedSapProvider;
83  delete m_ffrSapUser;
84 }
85 
86 TypeId
88 {
89  static TypeId tid = TypeId ("ns3::TdTbfqFfMacScheduler")
91  .SetGroupName("Lte")
92  .AddConstructor<TdTbfqFfMacScheduler> ()
93  .AddAttribute ("CqiTimerThreshold",
94  "The number of TTIs a CQI is valid (default 1000 - 1 sec.)",
95  UintegerValue (1000),
97  MakeUintegerChecker<uint32_t> ())
98  .AddAttribute ("DebtLimit",
99  "Flow debt limit (default -625000 bytes)",
100  IntegerValue (-625000),
102  MakeIntegerChecker<int> ())
103  .AddAttribute ("CreditLimit",
104  "Flow credit limit (default 625000 bytes)",
105  UintegerValue (625000),
107  MakeUintegerChecker<uint32_t> ())
108  .AddAttribute ("TokenPoolSize",
109  "The maximum value of flow token pool (default 1 bytes)",
110  UintegerValue (1),
112  MakeUintegerChecker<uint32_t> ())
113  .AddAttribute ("CreditableThreshold",
114  "Threshold of flow credit (default 0 bytes)",
115  UintegerValue (0),
117  MakeUintegerChecker<uint32_t> ())
118 
119  .AddAttribute ("HarqEnabled",
120  "Activate/Deactivate the HARQ [by default is active].",
121  BooleanValue (true),
124  .AddAttribute ("UlGrantMcs",
125  "The MCS of the UL grant, must be [0..15] (default 0)",
126  UintegerValue (0),
128  MakeUintegerChecker<uint8_t> ())
129  ;
130  return tid;
131 }
132 
133 
134 
135 void
137 {
138  m_cschedSapUser = s;
139 }
140 
141 void
143 {
144  m_schedSapUser = s;
145 }
146 
149 {
150  return m_cschedSapProvider;
151 }
152 
155 {
156  return m_schedSapProvider;
157 }
158 
159 void
161 {
162  m_ffrSapProvider = s;
163 }
164 
167 {
168  return m_ffrSapUser;
169 }
170 
171 void
173 {
174  NS_LOG_FUNCTION (this);
175  // Read the subset of parameters used
176  m_cschedCellConfig = params;
179  cnf.m_result = SUCCESS;
181  return;
182 }
183 
184 void
186 {
187  NS_LOG_FUNCTION (this << " RNTI " << params.m_rnti << " txMode " << (uint16_t)params.m_transmissionMode);
188  std::map <uint16_t,uint8_t>::iterator it = m_uesTxMode.find (params.m_rnti);
189  if (it == m_uesTxMode.end ())
190  {
191  m_uesTxMode.insert (std::pair <uint16_t, double> (params.m_rnti, params.m_transmissionMode));
192  // generate HARQ buffers
193  m_dlHarqCurrentProcessId.insert (std::pair <uint16_t,uint8_t > (params.m_rnti, 0));
194  DlHarqProcessesStatus_t dlHarqPrcStatus;
195  dlHarqPrcStatus.resize (8,0);
196  m_dlHarqProcessesStatus.insert (std::pair <uint16_t, DlHarqProcessesStatus_t> (params.m_rnti, dlHarqPrcStatus));
197  DlHarqProcessesTimer_t dlHarqProcessesTimer;
198  dlHarqProcessesTimer.resize (8,0);
199  m_dlHarqProcessesTimer.insert (std::pair <uint16_t, DlHarqProcessesTimer_t> (params.m_rnti, dlHarqProcessesTimer));
200  DlHarqProcessesDciBuffer_t dlHarqdci;
201  dlHarqdci.resize (8);
202  m_dlHarqProcessesDciBuffer.insert (std::pair <uint16_t, DlHarqProcessesDciBuffer_t> (params.m_rnti, dlHarqdci));
203  DlHarqRlcPduListBuffer_t dlHarqRlcPdu;
204  dlHarqRlcPdu.resize (2);
205  dlHarqRlcPdu.at (0).resize (8);
206  dlHarqRlcPdu.at (1).resize (8);
207  m_dlHarqProcessesRlcPduListBuffer.insert (std::pair <uint16_t, DlHarqRlcPduListBuffer_t> (params.m_rnti, dlHarqRlcPdu));
208  m_ulHarqCurrentProcessId.insert (std::pair <uint16_t,uint8_t > (params.m_rnti, 0));
209  UlHarqProcessesStatus_t ulHarqPrcStatus;
210  ulHarqPrcStatus.resize (8,0);
211  m_ulHarqProcessesStatus.insert (std::pair <uint16_t, UlHarqProcessesStatus_t> (params.m_rnti, ulHarqPrcStatus));
212  UlHarqProcessesDciBuffer_t ulHarqdci;
213  ulHarqdci.resize (8);
214  m_ulHarqProcessesDciBuffer.insert (std::pair <uint16_t, UlHarqProcessesDciBuffer_t> (params.m_rnti, ulHarqdci));
215  }
216  else
217  {
218  (*it).second = params.m_transmissionMode;
219  }
220  return;
221 }
222 
223 void
225 {
226  NS_LOG_FUNCTION (this << " New LC, rnti: " << params.m_rnti);
227 
228  std::map <uint16_t, tdtbfqsFlowPerf_t>::iterator it;
229  for (uint16_t i = 0; i < params.m_logicalChannelConfigList.size (); i++)
230  {
231  it = m_flowStatsDl.find (params.m_rnti);
232 
233  if (it == m_flowStatsDl.end ())
234  {
235  uint64_t mbrDlInBytes = params.m_logicalChannelConfigList.at (i).m_eRabMaximulBitrateDl / 8; // byte/s
236  uint64_t mbrUlInBytes = params.m_logicalChannelConfigList.at (i).m_eRabMaximulBitrateUl / 8; // byte/s
237 
238  tdtbfqsFlowPerf_t flowStatsDl;
239  flowStatsDl.flowStart = Simulator::Now ();
240  flowStatsDl.packetArrivalRate = 0;
241  flowStatsDl.tokenGenerationRate = mbrDlInBytes;
242  flowStatsDl.tokenPoolSize = 0;
243  flowStatsDl.maxTokenPoolSize = m_tokenPoolSize;
244  flowStatsDl.counter = 0;
245  flowStatsDl.burstCredit = m_creditLimit; // bytes
246  flowStatsDl.debtLimit = m_debtLimit; // bytes
248  m_flowStatsDl.insert (std::pair<uint16_t, tdtbfqsFlowPerf_t> (params.m_rnti, flowStatsDl));
249  tdtbfqsFlowPerf_t flowStatsUl;
250  flowStatsUl.flowStart = Simulator::Now ();
251  flowStatsUl.packetArrivalRate = 0;
252  flowStatsUl.tokenGenerationRate = mbrUlInBytes;
253  flowStatsUl.tokenPoolSize = 0;
254  flowStatsUl.maxTokenPoolSize = m_tokenPoolSize;
255  flowStatsUl.counter = 0;
256  flowStatsUl.burstCredit = m_creditLimit; // bytes
257  flowStatsUl.debtLimit = m_debtLimit; // bytes
259  m_flowStatsUl.insert (std::pair<uint16_t, tdtbfqsFlowPerf_t> (params.m_rnti, flowStatsUl));
260  }
261  else
262  {
263  // update MBR and GBR from UeManager::SetupDataRadioBearer ()
264  uint64_t mbrDlInBytes = params.m_logicalChannelConfigList.at (i).m_eRabMaximulBitrateDl / 8; // byte/s
265  uint64_t mbrUlInBytes = params.m_logicalChannelConfigList.at (i).m_eRabMaximulBitrateUl / 8; // byte/s
266  m_flowStatsDl[(*it).first].tokenGenerationRate = mbrDlInBytes;
267  m_flowStatsUl[(*it).first].tokenGenerationRate = mbrUlInBytes;
268 
269  }
270  }
271 
272  return;
273 }
274 
275 void
277 {
278  NS_LOG_FUNCTION (this);
279  for (uint16_t i = 0; i < params.m_logicalChannelIdentity.size (); i++)
280  {
281  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it = m_rlcBufferReq.begin ();
282  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator temp;
283  while (it!=m_rlcBufferReq.end ())
284  {
285  if (((*it).first.m_rnti == params.m_rnti) && ((*it).first.m_lcId == params.m_logicalChannelIdentity.at (i)))
286  {
287  temp = it;
288  it++;
289  m_rlcBufferReq.erase (temp);
290  }
291  else
292  {
293  it++;
294  }
295  }
296  }
297  return;
298 }
299 
300 void
302 {
303  NS_LOG_FUNCTION (this);
304 
305  m_uesTxMode.erase (params.m_rnti);
306  m_dlHarqCurrentProcessId.erase (params.m_rnti);
307  m_dlHarqProcessesStatus.erase (params.m_rnti);
308  m_dlHarqProcessesTimer.erase (params.m_rnti);
309  m_dlHarqProcessesDciBuffer.erase (params.m_rnti);
311  m_ulHarqCurrentProcessId.erase (params.m_rnti);
312  m_ulHarqProcessesStatus.erase (params.m_rnti);
313  m_ulHarqProcessesDciBuffer.erase (params.m_rnti);
314  m_flowStatsDl.erase (params.m_rnti);
315  m_flowStatsUl.erase (params.m_rnti);
316  m_ceBsrRxed.erase (params.m_rnti);
317  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it = m_rlcBufferReq.begin ();
318  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator temp;
319  while (it!=m_rlcBufferReq.end ())
320  {
321  if ((*it).first.m_rnti == params.m_rnti)
322  {
323  temp = it;
324  it++;
325  m_rlcBufferReq.erase (temp);
326  }
327  else
328  {
329  it++;
330  }
331  }
332  if (m_nextRntiUl == params.m_rnti)
333  {
334  m_nextRntiUl = 0;
335  }
336 
337  return;
338 }
339 
340 
341 void
343 {
344  NS_LOG_FUNCTION (this << params.m_rnti << (uint32_t) params.m_logicalChannelIdentity);
345  // API generated by RLC for updating RLC parameters on a LC (tx and retx queues)
346 
347  std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
348 
349  LteFlowId_t flow (params.m_rnti, params.m_logicalChannelIdentity);
350 
351  it = m_rlcBufferReq.find (flow);
352 
353  if (it == m_rlcBufferReq.end ())
354  {
355  m_rlcBufferReq.insert (std::pair <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters> (flow, params));
356  }
357  else
358  {
359  (*it).second = params;
360  }
361 
362  return;
363 }
364 
365 void
367 {
368  NS_LOG_FUNCTION (this);
369  NS_FATAL_ERROR ("method not implemented");
370  return;
371 }
372 
373 void
375 {
376  NS_LOG_FUNCTION (this);
377  NS_FATAL_ERROR ("method not implemented");
378  return;
379 }
380 
381 int
383 {
384  for (int i = 0; i < 4; i++)
385  {
386  if (dlbandwidth < TdTbfqType0AllocationRbg[i])
387  {
388  return (i + 1);
389  }
390  }
391 
392  return (-1);
393 }
394 
395 
396 unsigned int
398 {
399  std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
400  unsigned int lcActive = 0;
401  for (it = m_rlcBufferReq.begin (); it != m_rlcBufferReq.end (); it++)
402  {
403  if (((*it).first.m_rnti == rnti) && (((*it).second.m_rlcTransmissionQueueSize > 0)
404  || ((*it).second.m_rlcRetransmissionQueueSize > 0)
405  || ((*it).second.m_rlcStatusPduSize > 0) ))
406  {
407  lcActive++;
408  }
409  if ((*it).first.m_rnti > rnti)
410  {
411  break;
412  }
413  }
414  return (lcActive);
415 
416 }
417 
418 
419 uint8_t
421 {
422  NS_LOG_FUNCTION (this << rnti);
423 
424  std::map <uint16_t, uint8_t>::iterator it = m_dlHarqCurrentProcessId.find (rnti);
425  if (it == m_dlHarqCurrentProcessId.end ())
426  {
427  NS_FATAL_ERROR ("No Process Id found for this RNTI " << rnti);
428  }
429  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator itStat = m_dlHarqProcessesStatus.find (rnti);
430  if (itStat == m_dlHarqProcessesStatus.end ())
431  {
432  NS_FATAL_ERROR ("No Process Id Statusfound for this RNTI " << rnti);
433  }
434  uint8_t i = (*it).second;
435  do
436  {
437  i = (i + 1) % HARQ_PROC_NUM;
438  }
439  while ( ((*itStat).second.at (i) != 0)&&(i != (*it).second));
440  if ((*itStat).second.at (i) == 0)
441  {
442  return (true);
443  }
444  else
445  {
446  return (false); // return a not valid harq proc id
447  }
448 }
449 
450 
451 
452 uint8_t
454 {
455  NS_LOG_FUNCTION (this << rnti);
456 
457  if (m_harqOn == false)
458  {
459  return (0);
460  }
461 
462 
463  std::map <uint16_t, uint8_t>::iterator it = m_dlHarqCurrentProcessId.find (rnti);
464  if (it == m_dlHarqCurrentProcessId.end ())
465  {
466  NS_FATAL_ERROR ("No Process Id found for this RNTI " << rnti);
467  }
468  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator itStat = m_dlHarqProcessesStatus.find (rnti);
469  if (itStat == m_dlHarqProcessesStatus.end ())
470  {
471  NS_FATAL_ERROR ("No Process Id Statusfound for this RNTI " << rnti);
472  }
473  uint8_t i = (*it).second;
474  do
475  {
476  i = (i + 1) % HARQ_PROC_NUM;
477  }
478  while ( ((*itStat).second.at (i) != 0)&&(i != (*it).second));
479  if ((*itStat).second.at (i) == 0)
480  {
481  (*it).second = i;
482  (*itStat).second.at (i) = 1;
483  }
484  else
485  {
486  NS_FATAL_ERROR ("No HARQ process available for RNTI " << rnti << " check before update with HarqProcessAvailability");
487  }
488 
489  return ((*it).second);
490 }
491 
492 
493 void
495 {
496  NS_LOG_FUNCTION (this);
497 
498  std::map <uint16_t, DlHarqProcessesTimer_t>::iterator itTimers;
499  for (itTimers = m_dlHarqProcessesTimer.begin (); itTimers != m_dlHarqProcessesTimer.end (); itTimers ++)
500  {
501  for (uint16_t i = 0; i < HARQ_PROC_NUM; i++)
502  {
503  if ((*itTimers).second.at (i) == HARQ_DL_TIMEOUT)
504  {
505  // reset HARQ process
506 
507  NS_LOG_DEBUG (this << " Reset HARQ proc " << i << " for RNTI " << (*itTimers).first);
508  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator itStat = m_dlHarqProcessesStatus.find ((*itTimers).first);
509  if (itStat == m_dlHarqProcessesStatus.end ())
510  {
511  NS_FATAL_ERROR ("No Process Id Status found for this RNTI " << (*itTimers).first);
512  }
513  (*itStat).second.at (i) = 0;
514  (*itTimers).second.at (i) = 0;
515  }
516  else
517  {
518  (*itTimers).second.at (i)++;
519  }
520  }
521  }
522 
523 }
524 
525 
526 void
528 {
529  NS_LOG_FUNCTION (this << " Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf));
530  // API generated by RLC for triggering the scheduling of a DL subframe
531 
532 
533  // evaluate the relative channel quality indicator for each UE per each RBG
534  // (since we are using allocation type 0 the small unit of allocation is RBG)
535  // Resource allocation type 0 (see sec 7.1.6.1 of 36.213)
536 
537  RefreshDlCqiMaps ();
538 
540  int rbgNum = m_cschedCellConfig.m_dlBandwidth / rbgSize;
541  std::map <uint16_t, std::vector <uint16_t> > allocationMap; // RBs map per RNTI
542  std::vector <bool> rbgMap; // global RBGs map
543  uint16_t rbgAllocatedNum = 0;
544  std::set <uint16_t> rntiAllocated;
545  rbgMap.resize (m_cschedCellConfig.m_dlBandwidth / rbgSize, false);
546 
547  rbgMap = m_ffrSapProvider->GetAvailableDlRbg ();
548  for (std::vector<bool>::iterator it = rbgMap.begin (); it != rbgMap.end (); it++)
549  {
550  if ((*it) == true )
551  {
552  rbgAllocatedNum++;
553  }
554  }
555 
557 
558  // update UL HARQ proc id
559  std::map <uint16_t, uint8_t>::iterator itProcId;
560  for (itProcId = m_ulHarqCurrentProcessId.begin (); itProcId != m_ulHarqCurrentProcessId.end (); itProcId++)
561  {
562  (*itProcId).second = ((*itProcId).second + 1) % HARQ_PROC_NUM;
563  }
564 
565  // RACH Allocation
566  uint16_t rbAllocatedNum = 0;
567  std::vector <bool> ulRbMap;
568  ulRbMap.resize (m_cschedCellConfig.m_ulBandwidth, false);
569  ulRbMap = m_ffrSapProvider->GetAvailableUlRbg ();
570  uint8_t maxContinuousUlBandwidth = 0;
571  uint8_t tmpMinBandwidth = 0;
572  uint16_t ffrRbStartOffset = 0;
573  uint16_t tmpFfrRbStartOffset = 0;
574  uint16_t index = 0;
575 
576  for (std::vector<bool>::iterator it = ulRbMap.begin (); it != ulRbMap.end (); it++)
577  {
578  if ((*it) == true )
579  {
580  rbAllocatedNum++;
581  if (tmpMinBandwidth > maxContinuousUlBandwidth)
582  {
583  maxContinuousUlBandwidth = tmpMinBandwidth;
584  ffrRbStartOffset = tmpFfrRbStartOffset;
585  }
586  tmpMinBandwidth = 0;
587  }
588  else
589  {
590  if (tmpMinBandwidth == 0)
591  {
592  tmpFfrRbStartOffset = index;
593  }
594  tmpMinBandwidth++;
595  }
596  index++;
597  }
598 
599  if (tmpMinBandwidth > maxContinuousUlBandwidth)
600  {
601  maxContinuousUlBandwidth = tmpMinBandwidth;
602  ffrRbStartOffset = tmpFfrRbStartOffset;
603  }
604 
606  uint16_t rbStart = 0;
607  rbStart = ffrRbStartOffset;
608  std::vector <struct RachListElement_s>::iterator itRach;
609  for (itRach = m_rachList.begin (); itRach != m_rachList.end (); itRach++)
610  {
611  NS_ASSERT_MSG (m_amc->GetUlTbSizeFromMcs (m_ulGrantMcs, m_cschedCellConfig.m_ulBandwidth) > (*itRach).m_estimatedSize, " Default UL Grant MCS does not allow to send RACH messages");
612  BuildRarListElement_s newRar;
613  newRar.m_rnti = (*itRach).m_rnti;
614  // DL-RACH Allocation
615  // Ideal: no needs of configuring m_dci
616  // UL-RACH Allocation
617  newRar.m_grant.m_rnti = newRar.m_rnti;
618  newRar.m_grant.m_mcs = m_ulGrantMcs;
619  uint16_t rbLen = 1;
620  uint16_t tbSizeBits = 0;
621  // find lowest TB size that fits UL grant estimated size
622  while ((tbSizeBits < (*itRach).m_estimatedSize) && (rbStart + rbLen < (ffrRbStartOffset + maxContinuousUlBandwidth)))
623  {
624  rbLen++;
625  tbSizeBits = m_amc->GetUlTbSizeFromMcs (m_ulGrantMcs, rbLen);
626  }
627  if (tbSizeBits < (*itRach).m_estimatedSize)
628  {
629  // no more allocation space: finish allocation
630  break;
631  }
632  newRar.m_grant.m_rbStart = rbStart;
633  newRar.m_grant.m_rbLen = rbLen;
634  newRar.m_grant.m_tbSize = tbSizeBits / 8;
635  newRar.m_grant.m_hopping = false;
636  newRar.m_grant.m_tpc = 0;
637  newRar.m_grant.m_cqiRequest = false;
638  newRar.m_grant.m_ulDelay = false;
639  NS_LOG_INFO (this << " UL grant allocated to RNTI " << (*itRach).m_rnti << " rbStart " << rbStart << " rbLen " << rbLen << " MCS " << m_ulGrantMcs << " tbSize " << newRar.m_grant.m_tbSize);
640  for (uint16_t i = rbStart; i < rbStart + rbLen; i++)
641  {
642  m_rachAllocationMap.at (i) = (*itRach).m_rnti;
643  }
644 
645  if (m_harqOn == true)
646  {
647  // generate UL-DCI for HARQ retransmissions
648  UlDciListElement_s uldci;
649  uldci.m_rnti = newRar.m_rnti;
650  uldci.m_rbLen = rbLen;
651  uldci.m_rbStart = rbStart;
652  uldci.m_mcs = m_ulGrantMcs;
653  uldci.m_tbSize = tbSizeBits / 8;
654  uldci.m_ndi = 1;
655  uldci.m_cceIndex = 0;
656  uldci.m_aggrLevel = 1;
657  uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
658  uldci.m_hopping = false;
659  uldci.m_n2Dmrs = 0;
660  uldci.m_tpc = 0; // no power control
661  uldci.m_cqiRequest = false; // only period CQI at this stage
662  uldci.m_ulIndex = 0; // TDD parameter
663  uldci.m_dai = 1; // TDD parameter
664  uldci.m_freqHopping = 0;
665  uldci.m_pdcchPowerOffset = 0; // not used
666 
667  uint8_t harqId = 0;
668  std::map <uint16_t, uint8_t>::iterator itProcId;
669  itProcId = m_ulHarqCurrentProcessId.find (uldci.m_rnti);
670  if (itProcId == m_ulHarqCurrentProcessId.end ())
671  {
672  NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << uldci.m_rnti);
673  }
674  harqId = (*itProcId).second;
675  std::map <uint16_t, UlHarqProcessesDciBuffer_t>::iterator itDci = m_ulHarqProcessesDciBuffer.find (uldci.m_rnti);
676  if (itDci == m_ulHarqProcessesDciBuffer.end ())
677  {
678  NS_FATAL_ERROR ("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI " << uldci.m_rnti);
679  }
680  (*itDci).second.at (harqId) = uldci;
681  }
682 
683  rbStart = rbStart + rbLen;
684  ret.m_buildRarList.push_back (newRar);
685  }
686  m_rachList.clear ();
687 
688 
689  // Process DL HARQ feedback
691  // retrieve past HARQ retx buffered
692  if (m_dlInfoListBuffered.size () > 0)
693  {
694  if (params.m_dlInfoList.size () > 0)
695  {
696  NS_LOG_INFO (this << " Received DL-HARQ feedback");
697  m_dlInfoListBuffered.insert (m_dlInfoListBuffered.end (), params.m_dlInfoList.begin (), params.m_dlInfoList.end ());
698  }
699  }
700  else
701  {
702  if (params.m_dlInfoList.size () > 0)
703  {
705  }
706  }
707  if (m_harqOn == false)
708  {
709  // Ignore HARQ feedback
710  m_dlInfoListBuffered.clear ();
711  }
712  std::vector <struct DlInfoListElement_s> dlInfoListUntxed;
713  for (uint16_t i = 0; i < m_dlInfoListBuffered.size (); i++)
714  {
715  std::set <uint16_t>::iterator itRnti = rntiAllocated.find (m_dlInfoListBuffered.at (i).m_rnti);
716  if (itRnti != rntiAllocated.end ())
717  {
718  // RNTI already allocated for retx
719  continue;
720  }
721  uint8_t nLayers = m_dlInfoListBuffered.at (i).m_harqStatus.size ();
722  std::vector <bool> retx;
723  NS_LOG_INFO (this << " Processing DLHARQ feedback");
724  if (nLayers == 1)
725  {
726  retx.push_back (m_dlInfoListBuffered.at (i).m_harqStatus.at (0) == DlInfoListElement_s::NACK);
727  retx.push_back (false);
728  }
729  else
730  {
731  retx.push_back (m_dlInfoListBuffered.at (i).m_harqStatus.at (0) == DlInfoListElement_s::NACK);
732  retx.push_back (m_dlInfoListBuffered.at (i).m_harqStatus.at (1) == DlInfoListElement_s::NACK);
733  }
734  if (retx.at (0) || retx.at (1))
735  {
736  // retrieve HARQ process information
737  uint16_t rnti = m_dlInfoListBuffered.at (i).m_rnti;
738  uint8_t harqId = m_dlInfoListBuffered.at (i).m_harqProcessId;
739  NS_LOG_INFO (this << " HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId);
740  std::map <uint16_t, DlHarqProcessesDciBuffer_t>::iterator itHarq = m_dlHarqProcessesDciBuffer.find (rnti);
741  if (itHarq == m_dlHarqProcessesDciBuffer.end ())
742  {
743  NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << rnti);
744  }
745 
746  DlDciListElement_s dci = (*itHarq).second.at (harqId);
747  int rv = 0;
748  if (dci.m_rv.size () == 1)
749  {
750  rv = dci.m_rv.at (0);
751  }
752  else
753  {
754  rv = (dci.m_rv.at (0) > dci.m_rv.at (1) ? dci.m_rv.at (0) : dci.m_rv.at (1));
755  }
756 
757  if (rv == 3)
758  {
759  // maximum number of retx reached -> drop process
760  NS_LOG_INFO ("Maximum number of retransmissions reached -> drop process");
761  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator it = m_dlHarqProcessesStatus.find (rnti);
762  if (it == m_dlHarqProcessesStatus.end ())
763  {
764  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << m_dlInfoListBuffered.at (i).m_rnti);
765  }
766  (*it).second.at (harqId) = 0;
767  std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find (rnti);
768  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
769  {
770  NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << m_dlInfoListBuffered.at (i).m_rnti);
771  }
772  for (uint16_t k = 0; k < (*itRlcPdu).second.size (); k++)
773  {
774  (*itRlcPdu).second.at (k).at (harqId).clear ();
775  }
776  continue;
777  }
778  // check the feasibility of retransmitting on the same RBGs
779  // translate the DCI to Spectrum framework
780  std::vector <int> dciRbg;
781  uint32_t mask = 0x1;
782  NS_LOG_INFO ("Original RBGs " << dci.m_rbBitmap << " rnti " << dci.m_rnti);
783  for (int j = 0; j < 32; j++)
784  {
785  if (((dci.m_rbBitmap & mask) >> j) == 1)
786  {
787  dciRbg.push_back (j);
788  NS_LOG_INFO ("\t" << j);
789  }
790  mask = (mask << 1);
791  }
792  bool free = true;
793  for (uint8_t j = 0; j < dciRbg.size (); j++)
794  {
795  if (rbgMap.at (dciRbg.at (j)) == true)
796  {
797  free = false;
798  break;
799  }
800  }
801  if (free)
802  {
803  // use the same RBGs for the retx
804  // reserve RBGs
805  for (uint8_t j = 0; j < dciRbg.size (); j++)
806  {
807  rbgMap.at (dciRbg.at (j)) = true;
808  NS_LOG_INFO ("RBG " << dciRbg.at (j) << " assigned");
809  rbgAllocatedNum++;
810  }
811 
812  NS_LOG_INFO (this << " Send retx in the same RBGs");
813  }
814  else
815  {
816  // find RBGs for sending HARQ retx
817  uint8_t j = 0;
818  uint8_t rbgId = (dciRbg.at (dciRbg.size () - 1) + 1) % rbgNum;
819  uint8_t startRbg = dciRbg.at (dciRbg.size () - 1);
820  std::vector <bool> rbgMapCopy = rbgMap;
821  while ((j < dciRbg.size ())&&(startRbg != rbgId))
822  {
823  if (rbgMapCopy.at (rbgId) == false)
824  {
825  rbgMapCopy.at (rbgId) = true;
826  dciRbg.at (j) = rbgId;
827  j++;
828  }
829  rbgId = (rbgId + 1) % rbgNum;
830  }
831  if (j == dciRbg.size ())
832  {
833  // find new RBGs -> update DCI map
834  uint32_t rbgMask = 0;
835  for (uint16_t k = 0; k < dciRbg.size (); k++)
836  {
837  rbgMask = rbgMask + (0x1 << dciRbg.at (k));
838  rbgAllocatedNum++;
839  }
840  dci.m_rbBitmap = rbgMask;
841  rbgMap = rbgMapCopy;
842  NS_LOG_INFO (this << " Move retx in RBGs " << dciRbg.size ());
843  }
844  else
845  {
846  // HARQ retx cannot be performed on this TTI -> store it
847  dlInfoListUntxed.push_back (m_dlInfoListBuffered.at (i));
848  NS_LOG_INFO (this << " No resource for this retx -> buffer it");
849  }
850  }
851  // retrieve RLC PDU list for retx TBsize and update DCI
853  std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find (rnti);
854  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
855  {
856  NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << rnti);
857  }
858  for (uint8_t j = 0; j < nLayers; j++)
859  {
860  if (retx.at (j))
861  {
862  if (j >= dci.m_ndi.size ())
863  {
864  // for avoiding errors in MIMO transient phases
865  dci.m_ndi.push_back (0);
866  dci.m_rv.push_back (0);
867  dci.m_mcs.push_back (0);
868  dci.m_tbsSize.push_back (0);
869  NS_LOG_INFO (this << " layer " << (uint16_t)j << " no txed (MIMO transition)");
870  }
871  else
872  {
873  dci.m_ndi.at (j) = 0;
874  dci.m_rv.at (j)++;
875  (*itHarq).second.at (harqId).m_rv.at (j)++;
876  NS_LOG_INFO (this << " layer " << (uint16_t)j << " RV " << (uint16_t)dci.m_rv.at (j));
877  }
878  }
879  else
880  {
881  // empty TB of layer j
882  dci.m_ndi.at (j) = 0;
883  dci.m_rv.at (j) = 0;
884  dci.m_mcs.at (j) = 0;
885  dci.m_tbsSize.at (j) = 0;
886  NS_LOG_INFO (this << " layer " << (uint16_t)j << " no retx");
887  }
888  }
889  for (uint16_t k = 0; k < (*itRlcPdu).second.at (0).at (dci.m_harqProcess).size (); k++)
890  {
891  std::vector <struct RlcPduListElement_s> rlcPduListPerLc;
892  for (uint8_t j = 0; j < nLayers; j++)
893  {
894  if (retx.at (j))
895  {
896  if (j < dci.m_ndi.size ())
897  {
898  NS_LOG_INFO (" layer " << (uint16_t)j << " tb size " << dci.m_tbsSize.at (j));
899  rlcPduListPerLc.push_back ((*itRlcPdu).second.at (j).at (dci.m_harqProcess).at (k));
900  }
901  }
902  else
903  { // if no retx needed on layer j, push an RlcPduListElement_s object with m_size=0 to keep the size of rlcPduListPerLc vector = 2 in case of MIMO
904  NS_LOG_INFO (" layer " << (uint16_t)j << " tb size "<<dci.m_tbsSize.at (j));
905  RlcPduListElement_s emptyElement;
906  emptyElement.m_logicalChannelIdentity = (*itRlcPdu).second.at (j).at (dci.m_harqProcess).at (k).m_logicalChannelIdentity;
907  emptyElement.m_size = 0;
908  rlcPduListPerLc.push_back (emptyElement);
909  }
910  }
911 
912  if (rlcPduListPerLc.size () > 0)
913  {
914  newEl.m_rlcPduList.push_back (rlcPduListPerLc);
915  }
916  }
917  newEl.m_rnti = rnti;
918  newEl.m_dci = dci;
919  (*itHarq).second.at (harqId).m_rv = dci.m_rv;
920  // refresh timer
921  std::map <uint16_t, DlHarqProcessesTimer_t>::iterator itHarqTimer = m_dlHarqProcessesTimer.find (rnti);
922  if (itHarqTimer== m_dlHarqProcessesTimer.end ())
923  {
924  NS_FATAL_ERROR ("Unable to find HARQ timer for RNTI " << (uint16_t)rnti);
925  }
926  (*itHarqTimer).second.at (harqId) = 0;
927  ret.m_buildDataList.push_back (newEl);
928  rntiAllocated.insert (rnti);
929  }
930  else
931  {
932  // update HARQ process status
933  NS_LOG_INFO (this << " HARQ received ACK for UE " << m_dlInfoListBuffered.at (i).m_rnti);
934  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator it = m_dlHarqProcessesStatus.find (m_dlInfoListBuffered.at (i).m_rnti);
935  if (it == m_dlHarqProcessesStatus.end ())
936  {
937  NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << m_dlInfoListBuffered.at (i).m_rnti);
938  }
939  (*it).second.at (m_dlInfoListBuffered.at (i).m_harqProcessId) = 0;
940  std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find (m_dlInfoListBuffered.at (i).m_rnti);
941  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
942  {
943  NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << m_dlInfoListBuffered.at (i).m_rnti);
944  }
945  for (uint16_t k = 0; k < (*itRlcPdu).second.size (); k++)
946  {
947  (*itRlcPdu).second.at (k).at (m_dlInfoListBuffered.at (i).m_harqProcessId).clear ();
948  }
949  }
950  }
951  m_dlInfoListBuffered.clear ();
952  m_dlInfoListBuffered = dlInfoListUntxed;
953 
954  if (rbgAllocatedNum == rbgNum)
955  {
956  // all the RBGs are already allocated -> exit
957  if ((ret.m_buildDataList.size () > 0) || (ret.m_buildRarList.size () > 0))
958  {
960  }
961  return;
962  }
963 
964 
965  // update token pool, counter and bank size
966  std::map <uint16_t, tdtbfqsFlowPerf_t>::iterator itStats;
967  for (itStats = m_flowStatsDl.begin (); itStats != m_flowStatsDl.end (); itStats++)
968  {
969  if ( (*itStats).second.tokenGenerationRate / 1000 + (*itStats).second.tokenPoolSize > (*itStats).second.maxTokenPoolSize )
970  {
971  (*itStats).second.counter += (*itStats).second.tokenGenerationRate / 1000 - ( (*itStats).second.maxTokenPoolSize - (*itStats).second.tokenPoolSize );
972  (*itStats).second.tokenPoolSize = (*itStats).second.maxTokenPoolSize;
973  bankSize += (*itStats).second.tokenGenerationRate / 1000 - ( (*itStats).second.maxTokenPoolSize - (*itStats).second.tokenPoolSize );
974  }
975  else
976  {
977  (*itStats).second.tokenPoolSize += (*itStats).second.tokenGenerationRate / 1000;
978  }
979  }
980 
981 
982  // select UE with largest metric
983  std::map <uint16_t, tdtbfqsFlowPerf_t>::iterator it;
984  std::map <uint16_t, tdtbfqsFlowPerf_t>::iterator itMax = m_flowStatsDl.end ();
985  double metricMax = 0.0;
986  bool firstRnti = true;
987  for (it = m_flowStatsDl.begin (); it != m_flowStatsDl.end (); it++)
988  {
989  std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*it).first);
990  if ((itRnti != rntiAllocated.end ())||(!HarqProcessAvailability ((*it).first)))
991  {
992  // UE already allocated for HARQ or without HARQ process available -> drop it
993  if (itRnti != rntiAllocated.end ())
994  {
995  NS_LOG_DEBUG (this << " RNTI discared for HARQ tx" << (uint16_t)(*it).first);
996  }
997  if (!HarqProcessAvailability ((*it).first))
998  {
999  NS_LOG_DEBUG (this << " RNTI discared for HARQ id" << (uint16_t)(*it).first);
1000  }
1001  continue;
1002  }
1003 
1004 
1005  // check first the channel conditions for this UE, if CQI!=0
1006  std::map <uint16_t,SbMeasResult_s>::iterator itCqi;
1007  itCqi = m_a30CqiRxed.find ((*it).first);
1008  std::map <uint16_t,uint8_t>::iterator itTxMode;
1009  itTxMode = m_uesTxMode.find ((*it).first);
1010  if (itTxMode == m_uesTxMode.end ())
1011  {
1012  NS_FATAL_ERROR ("No Transmission Mode info on user " << (*it).first);
1013  }
1014  int nLayer = TransmissionModesLayers::TxMode2LayerNum ((*itTxMode).second);
1015 
1016  uint8_t cqiSum = 0;
1017  for (int k = 0; k < rbgNum; k++)
1018  {
1019  for (uint8_t j = 0; j < nLayer; j++)
1020  {
1021  if (itCqi == m_a30CqiRxed.end ())
1022  {
1023  cqiSum += 1; // no info on this user -> lowest MCS
1024  }
1025  else
1026  {
1027  cqiSum += (*itCqi).second.m_higherLayerSelected.at (k).m_sbCqi.at(j);
1028  }
1029  }
1030  }
1031 
1032  if (cqiSum == 0)
1033  {
1034  NS_LOG_INFO ("Skip this flow, CQI==0, rnti:"<<(*it).first);
1035  continue;
1036  }
1037 
1038 
1039  /*
1040  if (LcActivePerFlow ((*it).first) == 0)
1041  {
1042  continue;
1043  }
1044  */
1045 
1046  double metric = ( ( (double)(*it).second.counter ) / ( (double)(*it).second.tokenGenerationRate ) );
1047 
1048  if (firstRnti == true)
1049  {
1050  metricMax = metric;
1051  itMax = it;
1052  firstRnti = false;
1053  continue;
1054  }
1055  if (metric > metricMax)
1056  {
1057  metricMax = metric;
1058  itMax = it;
1059  }
1060  } // end for m_flowStatsDl
1061 
1062  if (itMax == m_flowStatsDl.end ())
1063  {
1064  // all UEs are allocated RBG or all UEs already allocated for HARQ or without HARQ process available
1065  return;
1066  }
1067  else
1068  {
1069  // assign all RBGs to this UE
1070  std::vector <uint16_t> tempMap;
1071  for (int i = 0; i < rbgNum; i++)
1072  {
1073  if ( rbgMap.at (i) == true) // this RBG is allocated in RACH procedure
1074  continue;
1075 
1076  if ((m_ffrSapProvider->IsDlRbgAvailableForUe (i, (*itMax).first)) == false)
1077  continue;
1078 
1079  tempMap.push_back (i);
1080  rbgMap.at (i) = true;
1081  }
1082  if (tempMap.size() > 0)
1083  {
1084  allocationMap.insert (std::pair <uint16_t, std::vector <uint16_t> > ((*itMax).first, tempMap));
1085  }
1086  }
1087 
1088 
1089 
1090  // generate the transmission opportunities by grouping the RBGs of the same RNTI and
1091  // creating the correspondent DCIs
1092  std::map <uint16_t, std::vector <uint16_t> >::iterator itMap = allocationMap.begin ();
1093  while (itMap != allocationMap.end ())
1094  {
1095  // create new BuildDataListElement_s for this LC
1096  BuildDataListElement_s newEl;
1097  newEl.m_rnti = (*itMap).first;
1098  // create the DlDciListElement_s
1099  DlDciListElement_s newDci;
1100  newDci.m_rnti = (*itMap).first;
1101  newDci.m_harqProcess = UpdateHarqProcessId ((*itMap).first);
1102 
1103  uint16_t lcActives = LcActivePerFlow ((*itMap).first);
1104  NS_LOG_INFO (this << "Allocate user " << newEl.m_rnti << " rbg " << lcActives);
1105  if (lcActives == 0)
1106  {
1107  // Set to max value, to avoid divide by 0 below
1108  lcActives = (uint16_t)65535; // UINT16_MAX;
1109  }
1110  uint16_t RgbPerRnti = (*itMap).second.size ();
1111  std::map <uint16_t,SbMeasResult_s>::iterator itCqi;
1112  itCqi = m_a30CqiRxed.find ((*itMap).first);
1113  std::map <uint16_t,uint8_t>::iterator itTxMode;
1114  itTxMode = m_uesTxMode.find ((*itMap).first);
1115  if (itTxMode == m_uesTxMode.end ())
1116  {
1117  NS_FATAL_ERROR ("No Transmission Mode info on user " << (*itMap).first);
1118  }
1119  int nLayer = TransmissionModesLayers::TxMode2LayerNum ((*itTxMode).second);
1120  std::vector <uint8_t> worstCqi (2, 15);
1121  if (itCqi != m_a30CqiRxed.end ())
1122  {
1123  for (uint16_t k = 0; k < (*itMap).second.size (); k++)
1124  {
1125  if ((*itCqi).second.m_higherLayerSelected.size () > (*itMap).second.at (k))
1126  {
1127  for (uint8_t j = 0; j < nLayer; j++)
1128  {
1129  if ((*itCqi).second.m_higherLayerSelected.at ((*itMap).second.at (k)).m_sbCqi.size () > j)
1130  {
1131  if (((*itCqi).second.m_higherLayerSelected.at ((*itMap).second.at (k)).m_sbCqi.at (j)) < worstCqi.at (j))
1132  {
1133  worstCqi.at (j) = ((*itCqi).second.m_higherLayerSelected.at ((*itMap).second.at (k)).m_sbCqi.at (j));
1134  }
1135  }
1136  else
1137  {
1138  // no CQI for this layer of this suband -> worst one
1139  worstCqi.at (j) = 1;
1140  }
1141  }
1142  }
1143  else
1144  {
1145  for (uint8_t j = 0; j < nLayer; j++)
1146  {
1147  worstCqi.at (j) = 1; // try with lowest MCS in RBG with no info on channel
1148  }
1149  }
1150  }
1151  }
1152  else
1153  {
1154  for (uint8_t j = 0; j < nLayer; j++)
1155  {
1156  worstCqi.at (j) = 1; // try with lowest MCS in RBG with no info on channel
1157  }
1158  }
1159  uint32_t bytesTxed = 0;
1160  for (uint8_t j = 0; j < nLayer; j++)
1161  {
1162  newDci.m_mcs.push_back (m_amc->GetMcsFromCqi (worstCqi.at (j)));
1163  int tbSize = (m_amc->GetDlTbSizeFromMcs (newDci.m_mcs.at (j), RgbPerRnti * rbgSize) / 8); // (size of TB in bytes according to table 7.1.7.2.1-1 of 36.213)
1164  newDci.m_tbsSize.push_back (tbSize);
1165  bytesTxed += tbSize;
1166  }
1167 
1168  newDci.m_resAlloc = 0; // only allocation type 0 at this stage
1169  newDci.m_rbBitmap = 0; // TBD (32 bit bitmap see 7.1.6 of 36.213)
1170  uint32_t rbgMask = 0;
1171  for (uint16_t k = 0; k < (*itMap).second.size (); k++)
1172  {
1173  rbgMask = rbgMask + (0x1 << (*itMap).second.at (k));
1174  NS_LOG_INFO (this << " Allocated RBG " << (*itMap).second.at (k));
1175  }
1176  newDci.m_rbBitmap = rbgMask; // (32 bit bitmap see 7.1.6 of 36.213)
1177 
1178  // create the rlc PDUs -> equally divide resources among actives LCs
1179  std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator itBufReq;
1180  for (itBufReq = m_rlcBufferReq.begin (); itBufReq != m_rlcBufferReq.end (); itBufReq++)
1181  {
1182  if (((*itBufReq).first.m_rnti == (*itMap).first)
1183  && (((*itBufReq).second.m_rlcTransmissionQueueSize > 0)
1184  || ((*itBufReq).second.m_rlcRetransmissionQueueSize > 0)
1185  || ((*itBufReq).second.m_rlcStatusPduSize > 0) ))
1186  {
1187  std::vector <struct RlcPduListElement_s> newRlcPduLe;
1188  for (uint8_t j = 0; j < nLayer; j++)
1189  {
1190  RlcPduListElement_s newRlcEl;
1191  newRlcEl.m_logicalChannelIdentity = (*itBufReq).first.m_lcId;
1192  newRlcEl.m_size = newDci.m_tbsSize.at (j) / lcActives;
1193  NS_LOG_INFO (this << " LCID " << (uint32_t) newRlcEl.m_logicalChannelIdentity << " size " << newRlcEl.m_size << " layer " << (uint16_t)j);
1194  newRlcPduLe.push_back (newRlcEl);
1195  UpdateDlRlcBufferInfo (newDci.m_rnti, newRlcEl.m_logicalChannelIdentity, newRlcEl.m_size);
1196  if (m_harqOn == true)
1197  {
1198  // store RLC PDU list for HARQ
1199  std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find ((*itMap).first);
1200  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
1201  {
1202  NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << (*itMap).first);
1203  }
1204  (*itRlcPdu).second.at (j).at (newDci.m_harqProcess).push_back (newRlcEl);
1205  }
1206  }
1207  newEl.m_rlcPduList.push_back (newRlcPduLe);
1208  }
1209  if ((*itBufReq).first.m_rnti > (*itMap).first)
1210  {
1211  break;
1212  }
1213  }
1214  for (uint8_t j = 0; j < nLayer; j++)
1215  {
1216  newDci.m_ndi.push_back (1);
1217  newDci.m_rv.push_back (0);
1218  }
1219 
1220  newDci.m_tpc = m_ffrSapProvider->GetTpc ((*itMap).first);
1221 
1222  newEl.m_dci = newDci;
1223 
1224  if (m_harqOn == true)
1225  {
1226  // store DCI for HARQ
1227  std::map <uint16_t, DlHarqProcessesDciBuffer_t>::iterator itDci = m_dlHarqProcessesDciBuffer.find (newEl.m_rnti);
1228  if (itDci == m_dlHarqProcessesDciBuffer.end ())
1229  {
1230  NS_FATAL_ERROR ("Unable to find RNTI entry in DCI HARQ buffer for RNTI " << newEl.m_rnti);
1231  }
1232  (*itDci).second.at (newDci.m_harqProcess) = newDci;
1233  // refresh timer
1234  std::map <uint16_t, DlHarqProcessesTimer_t>::iterator itHarqTimer = m_dlHarqProcessesTimer.find (newEl.m_rnti);
1235  if (itHarqTimer== m_dlHarqProcessesTimer.end ())
1236  {
1237  NS_FATAL_ERROR ("Unable to find HARQ timer for RNTI " << (uint16_t)newEl.m_rnti);
1238  }
1239  (*itHarqTimer).second.at (newDci.m_harqProcess) = 0;
1240  }
1241 
1242 
1243  // update UE stats
1244  if ( bytesTxed <= (*itMax).second.tokenPoolSize )
1245  {
1246  (*itMax).second.tokenPoolSize -= bytesTxed;
1247  }
1248  else
1249  {
1250  (*itMax).second.counter = (*itMax).second.counter - ( bytesTxed - (*itMax).second.tokenPoolSize );
1251  (*itMax).second.tokenPoolSize = 0;
1252  if (bankSize <= ( bytesTxed - (*itMax).second.tokenPoolSize ))
1253  bankSize = 0;
1254  else
1255  bankSize = bankSize - ( bytesTxed - (*itMax).second.tokenPoolSize );
1256  }
1257 
1258 
1259  // ...more parameters -> ignored in this version
1260 
1261  ret.m_buildDataList.push_back (newEl);
1262 
1263  itMap++;
1264  } // end while allocation
1265  ret.m_nrOfPdcchOfdmSymbols = 1;
1266 
1268 
1269 
1270  return;
1271 }
1272 
1273 void
1275 {
1276  NS_LOG_FUNCTION (this);
1277 
1278  m_rachList = params.m_rachList;
1279 
1280  return;
1281 }
1282 
1283 void
1285 {
1286  NS_LOG_FUNCTION (this);
1288 
1289  for (unsigned int i = 0; i < params.m_cqiList.size (); i++)
1290  {
1291  if ( params.m_cqiList.at (i).m_cqiType == CqiListElement_s::P10 )
1292  {
1293  NS_LOG_LOGIC ("wideband CQI " << (uint32_t) params.m_cqiList.at (i).m_wbCqi.at (0) << " reported");
1294  std::map <uint16_t,uint8_t>::iterator it;
1295  uint16_t rnti = params.m_cqiList.at (i).m_rnti;
1296  it = m_p10CqiRxed.find (rnti);
1297  if (it == m_p10CqiRxed.end ())
1298  {
1299  // create the new entry
1300  m_p10CqiRxed.insert ( std::pair<uint16_t, uint8_t > (rnti, params.m_cqiList.at (i).m_wbCqi.at (0)) ); // only codeword 0 at this stage (SISO)
1301  // generate correspondent timer
1302  m_p10CqiTimers.insert ( std::pair<uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
1303  }
1304  else
1305  {
1306  // update the CQI value and refresh correspondent timer
1307  (*it).second = params.m_cqiList.at (i).m_wbCqi.at (0);
1308  // update correspondent timer
1309  std::map <uint16_t,uint32_t>::iterator itTimers;
1310  itTimers = m_p10CqiTimers.find (rnti);
1311  (*itTimers).second = m_cqiTimersThreshold;
1312  }
1313  }
1314  else if ( params.m_cqiList.at (i).m_cqiType == CqiListElement_s::A30 )
1315  {
1316  // subband CQI reporting high layer configured
1317  std::map <uint16_t,SbMeasResult_s>::iterator it;
1318  uint16_t rnti = params.m_cqiList.at (i).m_rnti;
1319  it = m_a30CqiRxed.find (rnti);
1320  if (it == m_a30CqiRxed.end ())
1321  {
1322  // create the new entry
1323  m_a30CqiRxed.insert ( std::pair<uint16_t, SbMeasResult_s > (rnti, params.m_cqiList.at (i).m_sbMeasResult) );
1324  m_a30CqiTimers.insert ( std::pair<uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
1325  }
1326  else
1327  {
1328  // update the CQI value and refresh correspondent timer
1329  (*it).second = params.m_cqiList.at (i).m_sbMeasResult;
1330  std::map <uint16_t,uint32_t>::iterator itTimers;
1331  itTimers = m_a30CqiTimers.find (rnti);
1332  (*itTimers).second = m_cqiTimersThreshold;
1333  }
1334  }
1335  else
1336  {
1337  NS_LOG_ERROR (this << " CQI type unknown");
1338  }
1339  }
1340 
1341  return;
1342 }
1343 
1344 
1345 double
1346 TdTbfqFfMacScheduler::EstimateUlSinr (uint16_t rnti, uint16_t rb)
1347 {
1348  std::map <uint16_t, std::vector <double> >::iterator itCqi = m_ueCqi.find (rnti);
1349  if (itCqi == m_ueCqi.end ())
1350  {
1351  // no cqi info about this UE
1352  return (NO_SINR);
1353 
1354  }
1355  else
1356  {
1357  // take the average SINR value among the available
1358  double sinrSum = 0;
1359  unsigned int sinrNum = 0;
1360  for (uint32_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1361  {
1362  double sinr = (*itCqi).second.at (i);
1363  if (sinr != NO_SINR)
1364  {
1365  sinrSum += sinr;
1366  sinrNum++;
1367  }
1368  }
1369  double estimatedSinr = (sinrNum > 0) ? (sinrSum / sinrNum) : DBL_MAX;
1370  // store the value
1371  (*itCqi).second.at (rb) = estimatedSinr;
1372  return (estimatedSinr);
1373  }
1374 }
1375 
1376 void
1378 {
1379  NS_LOG_FUNCTION (this << " UL - Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf) << " size " << params.m_ulInfoList.size ());
1380 
1381  RefreshUlCqiMaps ();
1383 
1384  // Generate RBs map
1386  std::vector <bool> rbMap;
1387  uint16_t rbAllocatedNum = 0;
1388  std::set <uint16_t> rntiAllocated;
1389  std::vector <uint16_t> rbgAllocationMap;
1390  // update with RACH allocation map
1391  rbgAllocationMap = m_rachAllocationMap;
1392  //rbgAllocationMap.resize (m_cschedCellConfig.m_ulBandwidth, 0);
1393  m_rachAllocationMap.clear ();
1395 
1396  rbMap.resize (m_cschedCellConfig.m_ulBandwidth, false);
1397 
1398  rbMap = m_ffrSapProvider->GetAvailableUlRbg ();
1399 
1400  for (std::vector<bool>::iterator it = rbMap.begin (); it != rbMap.end (); it++)
1401  {
1402  if ((*it) == true )
1403  {
1404  rbAllocatedNum++;
1405  }
1406  }
1407 
1408  uint8_t minContinuousUlBandwidth = m_ffrSapProvider->GetMinContinuousUlBandwidth ();
1409  uint8_t ffrUlBandwidth = m_cschedCellConfig.m_ulBandwidth - rbAllocatedNum;
1410 
1411  // remove RACH allocation
1412  for (uint16_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1413  {
1414  if (rbgAllocationMap.at (i) != 0)
1415  {
1416  rbMap.at (i) = true;
1417  NS_LOG_DEBUG (this << " Allocated for RACH " << i);
1418  }
1419  }
1420 
1421 
1422  if (m_harqOn == true)
1423  {
1424  // Process UL HARQ feedback
1425  for (uint16_t i = 0; i < params.m_ulInfoList.size (); i++)
1426  {
1427  if (params.m_ulInfoList.at (i).m_receptionStatus == UlInfoListElement_s::NotOk)
1428  {
1429  // retx correspondent block: retrieve the UL-DCI
1430  uint16_t rnti = params.m_ulInfoList.at (i).m_rnti;
1431  std::map <uint16_t, uint8_t>::iterator itProcId = m_ulHarqCurrentProcessId.find (rnti);
1432  if (itProcId == m_ulHarqCurrentProcessId.end ())
1433  {
1434  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1435  }
1436  uint8_t harqId = (uint8_t)((*itProcId).second - HARQ_PERIOD) % HARQ_PROC_NUM;
1437  NS_LOG_INFO (this << " UL-HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId << " i " << i << " size " << params.m_ulInfoList.size ());
1438  std::map <uint16_t, UlHarqProcessesDciBuffer_t>::iterator itHarq = m_ulHarqProcessesDciBuffer.find (rnti);
1439  if (itHarq == m_ulHarqProcessesDciBuffer.end ())
1440  {
1441  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1442  continue;
1443  }
1444  UlDciListElement_s dci = (*itHarq).second.at (harqId);
1445  std::map <uint16_t, UlHarqProcessesStatus_t>::iterator itStat = m_ulHarqProcessesStatus.find (rnti);
1446  if (itStat == m_ulHarqProcessesStatus.end ())
1447  {
1448  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1449  }
1450  if ((*itStat).second.at (harqId) >= 3)
1451  {
1452  NS_LOG_INFO ("Max number of retransmissions reached (UL)-> drop process");
1453  continue;
1454  }
1455  bool free = true;
1456  for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1457  {
1458  if (rbMap.at (j) == true)
1459  {
1460  free = false;
1461  NS_LOG_INFO (this << " BUSY " << j);
1462  }
1463  }
1464  if (free)
1465  {
1466  // retx on the same RBs
1467  for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1468  {
1469  rbMap.at (j) = true;
1470  rbgAllocationMap.at (j) = dci.m_rnti;
1471  NS_LOG_INFO ("\tRB " << j);
1472  rbAllocatedNum++;
1473  }
1474  NS_LOG_INFO (this << " Send retx in the same RBs " << (uint16_t)dci.m_rbStart << " to " << dci.m_rbStart + dci.m_rbLen << " RV " << (*itStat).second.at (harqId) + 1);
1475  }
1476  else
1477  {
1478  NS_LOG_INFO ("Cannot allocate retx due to RACH allocations for UE " << rnti);
1479  continue;
1480  }
1481  dci.m_ndi = 0;
1482  // Update HARQ buffers with new HarqId
1483  (*itStat).second.at ((*itProcId).second) = (*itStat).second.at (harqId) + 1;
1484  (*itStat).second.at (harqId) = 0;
1485  (*itHarq).second.at ((*itProcId).second) = dci;
1486  ret.m_dciList.push_back (dci);
1487  rntiAllocated.insert (dci.m_rnti);
1488  }
1489  else
1490  {
1491  NS_LOG_INFO (this << " HARQ-ACK feedback from RNTI " << params.m_ulInfoList.at (i).m_rnti);
1492  }
1493  }
1494  }
1495 
1496  std::map <uint16_t,uint32_t>::iterator it;
1497  int nflows = 0;
1498 
1499  for (it = m_ceBsrRxed.begin (); it != m_ceBsrRxed.end (); it++)
1500  {
1501  std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*it).first);
1502  // select UEs with queues not empty and not yet allocated for HARQ
1503  if (((*it).second > 0)&&(itRnti == rntiAllocated.end ()))
1504  {
1505  nflows++;
1506  }
1507  }
1508 
1509  if (nflows == 0)
1510  {
1511  if (ret.m_dciList.size () > 0)
1512  {
1513  m_allocationMaps.insert (std::pair <uint16_t, std::vector <uint16_t> > (params.m_sfnSf, rbgAllocationMap));
1515  }
1516 
1517  return; // no flows to be scheduled
1518  }
1519 
1520 
1521  // Divide the remaining resources equally among the active users starting from the subsequent one served last scheduling trigger
1522  uint16_t tempRbPerFlow = (ffrUlBandwidth) / (nflows + rntiAllocated.size ());
1523  uint16_t rbPerFlow = (minContinuousUlBandwidth < tempRbPerFlow) ? minContinuousUlBandwidth : tempRbPerFlow;
1524 
1525  if (rbPerFlow < 3)
1526  {
1527  rbPerFlow = 3; // at least 3 rbg per flow (till available resource) to ensure TxOpportunity >= 7 bytes
1528  }
1529  int rbAllocated = 0;
1530 
1531  std::map <uint16_t, tdtbfqsFlowPerf_t>::iterator itStats;
1532  if (m_nextRntiUl != 0)
1533  {
1534  for (it = m_ceBsrRxed.begin (); it != m_ceBsrRxed.end (); it++)
1535  {
1536  if ((*it).first == m_nextRntiUl)
1537  {
1538  break;
1539  }
1540  }
1541  if (it == m_ceBsrRxed.end ())
1542  {
1543  NS_LOG_ERROR (this << " no user found");
1544  }
1545  }
1546  else
1547  {
1548  it = m_ceBsrRxed.begin ();
1549  m_nextRntiUl = (*it).first;
1550  }
1551  do
1552  {
1553  std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*it).first);
1554  if ((itRnti != rntiAllocated.end ())||((*it).second == 0))
1555  {
1556  // UE already allocated for UL-HARQ -> skip it
1557  NS_LOG_DEBUG (this << " UE already allocated in HARQ -> discared, RNTI " << (*it).first);
1558  it++;
1559  if (it == m_ceBsrRxed.end ())
1560  {
1561  // restart from the first
1562  it = m_ceBsrRxed.begin ();
1563  }
1564  continue;
1565  }
1566  if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1567  {
1568  // limit to physical resources last resource assignment
1569  rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1570  // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1571  if (rbPerFlow < 3)
1572  {
1573  // terminate allocation
1574  rbPerFlow = 0;
1575  }
1576  }
1577 
1578  rbAllocated = 0;
1579  UlDciListElement_s uldci;
1580  uldci.m_rnti = (*it).first;
1581  uldci.m_rbLen = rbPerFlow;
1582  bool allocated = false;
1583  NS_LOG_INFO (this << " RB Allocated " << rbAllocated << " rbPerFlow " << rbPerFlow << " flows " << nflows);
1584  while ((!allocated)&&((rbAllocated + rbPerFlow - m_cschedCellConfig.m_ulBandwidth) < 1) && (rbPerFlow != 0))
1585  {
1586  // check availability
1587  bool free = true;
1588  for (uint16_t j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1589  {
1590  if (rbMap.at (j) == true)
1591  {
1592  free = false;
1593  break;
1594  }
1595  if ((m_ffrSapProvider->IsUlRbgAvailableForUe (j, (*it).first)) == false)
1596  {
1597  free = false;
1598  break;
1599  }
1600  }
1601  if (free)
1602  {
1603  NS_LOG_INFO (this << "RNTI: "<< (*it).first<< " RB Allocated " << rbAllocated << " rbPerFlow " << rbPerFlow << " flows " << nflows);
1604  uldci.m_rbStart = rbAllocated;
1605 
1606  for (uint16_t j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1607  {
1608  rbMap.at (j) = true;
1609  // store info on allocation for managing ul-cqi interpretation
1610  rbgAllocationMap.at (j) = (*it).first;
1611  }
1612  rbAllocated += rbPerFlow;
1613  allocated = true;
1614  break;
1615  }
1616  rbAllocated++;
1617  if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1618  {
1619  // limit to physical resources last resource assignment
1620  rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1621  // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1622  if (rbPerFlow < 3)
1623  {
1624  // terminate allocation
1625  rbPerFlow = 0;
1626  }
1627  }
1628  }
1629  if (!allocated)
1630  {
1631  // unable to allocate new resource: finish scheduling
1632 // m_nextRntiUl = (*it).first;
1633 // if (ret.m_dciList.size () > 0)
1634 // {
1635 // m_schedSapUser->SchedUlConfigInd (ret);
1636 // }
1637 // m_allocationMaps.insert (std::pair <uint16_t, std::vector <uint16_t> > (params.m_sfnSf, rbgAllocationMap));
1638 // return;
1639  break;
1640  }
1641 
1642 
1643 
1644  std::map <uint16_t, std::vector <double> >::iterator itCqi = m_ueCqi.find ((*it).first);
1645  int cqi = 0;
1646  if (itCqi == m_ueCqi.end ())
1647  {
1648  // no cqi info about this UE
1649  uldci.m_mcs = 0; // MCS 0 -> UL-AMC TBD
1650  }
1651  else
1652  {
1653  // take the lowest CQI value (worst RB)
1654  NS_ABORT_MSG_IF ((*itCqi).second.size() == 0, "CQI of RNTI = " << (*it).first << " has expired");
1655  double minSinr = (*itCqi).second.at (uldci.m_rbStart);
1656  if (minSinr == NO_SINR)
1657  {
1658  minSinr = EstimateUlSinr ((*it).first, uldci.m_rbStart);
1659  }
1660  for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1661  {
1662  double sinr = (*itCqi).second.at (i);
1663  if (sinr == NO_SINR)
1664  {
1665  sinr = EstimateUlSinr ((*it).first, i);
1666  }
1667  if (sinr < minSinr)
1668  {
1669  minSinr = sinr;
1670  }
1671  }
1672 
1673  // translate SINR -> cqi: WILD ACK: same as DL
1674  double s = log2 ( 1 + (
1675  std::pow (10, minSinr / 10 ) /
1676  ( (-std::log (5.0 * 0.00005 )) / 1.5) ));
1677  cqi = m_amc->GetCqiFromSpectralEfficiency (s);
1678  if (cqi == 0)
1679  {
1680  it++;
1681  if (it == m_ceBsrRxed.end ())
1682  {
1683  // restart from the first
1684  it = m_ceBsrRxed.begin ();
1685  }
1686  NS_LOG_DEBUG (this << " UE discarded for CQI = 0, RNTI " << uldci.m_rnti);
1687  // remove UE from allocation map
1688  for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1689  {
1690  rbgAllocationMap.at (i) = 0;
1691  }
1692  continue; // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
1693  }
1694  uldci.m_mcs = m_amc->GetMcsFromCqi (cqi);
1695  }
1696 
1697  uldci.m_tbSize = (m_amc->GetUlTbSizeFromMcs (uldci.m_mcs, rbPerFlow) / 8);
1698  UpdateUlRlcBufferInfo (uldci.m_rnti, uldci.m_tbSize);
1699  uldci.m_ndi = 1;
1700  uldci.m_cceIndex = 0;
1701  uldci.m_aggrLevel = 1;
1702  uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
1703  uldci.m_hopping = false;
1704  uldci.m_n2Dmrs = 0;
1705  uldci.m_tpc = 0; // no power control
1706  uldci.m_cqiRequest = false; // only period CQI at this stage
1707  uldci.m_ulIndex = 0; // TDD parameter
1708  uldci.m_dai = 1; // TDD parameter
1709  uldci.m_freqHopping = 0;
1710  uldci.m_pdcchPowerOffset = 0; // not used
1711  ret.m_dciList.push_back (uldci);
1712  // store DCI for HARQ_PERIOD
1713  uint8_t harqId = 0;
1714  if (m_harqOn == true)
1715  {
1716  std::map <uint16_t, uint8_t>::iterator itProcId;
1717  itProcId = m_ulHarqCurrentProcessId.find (uldci.m_rnti);
1718  if (itProcId == m_ulHarqCurrentProcessId.end ())
1719  {
1720  NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << uldci.m_rnti);
1721  }
1722  harqId = (*itProcId).second;
1723  std::map <uint16_t, UlHarqProcessesDciBuffer_t>::iterator itDci = m_ulHarqProcessesDciBuffer.find (uldci.m_rnti);
1724  if (itDci == m_ulHarqProcessesDciBuffer.end ())
1725  {
1726  NS_FATAL_ERROR ("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI " << uldci.m_rnti);
1727  }
1728  (*itDci).second.at (harqId) = uldci;
1729  // Update HARQ process status (RV 0)
1730  std::map <uint16_t, UlHarqProcessesStatus_t>::iterator itStat = m_ulHarqProcessesStatus.find (uldci.m_rnti);
1731  if (itStat == m_ulHarqProcessesStatus.end ())
1732  {
1733  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << uldci.m_rnti);
1734  }
1735  (*itStat).second.at (harqId) = 0;
1736  }
1737 
1738  NS_LOG_INFO (this << " UE Allocation RNTI " << (*it).first << " startPRB " << (uint32_t)uldci.m_rbStart << " nPRB " << (uint32_t)uldci.m_rbLen << " CQI " << cqi << " MCS " << (uint32_t)uldci.m_mcs << " TBsize " << uldci.m_tbSize << " RbAlloc " << rbAllocated << " harqId " << (uint16_t)harqId);
1739 
1740  it++;
1741  if (it == m_ceBsrRxed.end ())
1742  {
1743  // restart from the first
1744  it = m_ceBsrRxed.begin ();
1745  }
1746  if ((rbAllocated == m_cschedCellConfig.m_ulBandwidth) || (rbPerFlow == 0))
1747  {
1748  // Stop allocation: no more PRBs
1749  m_nextRntiUl = (*it).first;
1750  break;
1751  }
1752  }
1753  while (((*it).first != m_nextRntiUl)&&(rbPerFlow!=0));
1754 
1755 
1756  m_allocationMaps.insert (std::pair <uint16_t, std::vector <uint16_t> > (params.m_sfnSf, rbgAllocationMap));
1758 
1759  return;
1760 }
1761 
1762 void
1764 {
1765  NS_LOG_FUNCTION (this);
1766  return;
1767 }
1768 
1769 void
1771 {
1772  NS_LOG_FUNCTION (this);
1773  return;
1774 }
1775 
1776 void
1778 {
1779  NS_LOG_FUNCTION (this);
1780 
1781  std::map <uint16_t,uint32_t>::iterator it;
1782 
1783  for (unsigned int i = 0; i < params.m_macCeList.size (); i++)
1784  {
1785  if ( params.m_macCeList.at (i).m_macCeType == MacCeListElement_s::BSR )
1786  {
1787  // buffer status report
1788  // note that this scheduler does not differentiate the
1789  // allocation according to which LCGs have more/less bytes
1790  // to send.
1791  // Hence the BSR of different LCGs are just summed up to get
1792  // a total queue size that is used for allocation purposes.
1793 
1794  uint32_t buffer = 0;
1795  for (uint8_t lcg = 0; lcg < 4; ++lcg)
1796  {
1797  uint8_t bsrId = params.m_macCeList.at (i).m_macCeValue.m_bufferStatus.at (lcg);
1798  buffer += BufferSizeLevelBsr::BsrId2BufferSize (bsrId);
1799  }
1800 
1801  uint16_t rnti = params.m_macCeList.at (i).m_rnti;
1802  NS_LOG_LOGIC (this << "RNTI=" << rnti << " buffer=" << buffer);
1803  it = m_ceBsrRxed.find (rnti);
1804  if (it == m_ceBsrRxed.end ())
1805  {
1806  // create the new entry
1807  m_ceBsrRxed.insert ( std::pair<uint16_t, uint32_t > (rnti, buffer));
1808  }
1809  else
1810  {
1811  // update the buffer size value
1812  (*it).second = buffer;
1813  }
1814  }
1815  }
1816 
1817  return;
1818 }
1819 
1820 void
1822 {
1823  NS_LOG_FUNCTION (this);
1824 // retrieve the allocation for this subframe
1825  switch (m_ulCqiFilter)
1826  {
1828  {
1829  // filter all the CQIs that are not SRS based
1830  if (params.m_ulCqi.m_type != UlCqi_s::SRS)
1831  {
1832  return;
1833  }
1834  }
1835  break;
1837  {
1838  // filter all the CQIs that are not SRS based
1839  if (params.m_ulCqi.m_type != UlCqi_s::PUSCH)
1840  {
1841  return;
1842  }
1843  }
1844  break;
1845  default:
1846  NS_FATAL_ERROR ("Unknown UL CQI type");
1847  }
1848 
1849  switch (params.m_ulCqi.m_type)
1850  {
1851  case UlCqi_s::PUSCH:
1852  {
1853  std::map <uint16_t, std::vector <uint16_t> >::iterator itMap;
1854  std::map <uint16_t, std::vector <double> >::iterator itCqi;
1855  NS_LOG_DEBUG (this << " Collect PUSCH CQIs of Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf));
1856  itMap = m_allocationMaps.find (params.m_sfnSf);
1857  if (itMap == m_allocationMaps.end ())
1858  {
1859  return;
1860  }
1861  for (uint32_t i = 0; i < (*itMap).second.size (); i++)
1862  {
1863  // convert from fixed point notation Sxxxxxxxxxxx.xxx to double
1864  double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (i));
1865  itCqi = m_ueCqi.find ((*itMap).second.at (i));
1866  if (itCqi == m_ueCqi.end ())
1867  {
1868  // create a new entry
1869  std::vector <double> newCqi;
1870  for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1871  {
1872  if (i == j)
1873  {
1874  newCqi.push_back (sinr);
1875  }
1876  else
1877  {
1878  // initialize with NO_SINR value.
1879  newCqi.push_back (NO_SINR);
1880  }
1881 
1882  }
1883  m_ueCqi.insert (std::pair <uint16_t, std::vector <double> > ((*itMap).second.at (i), newCqi));
1884  // generate correspondent timer
1885  m_ueCqiTimers.insert (std::pair <uint16_t, uint32_t > ((*itMap).second.at (i), m_cqiTimersThreshold));
1886  }
1887  else
1888  {
1889  // update the value
1890  (*itCqi).second.at (i) = sinr;
1891  NS_LOG_DEBUG (this << " RNTI " << (*itMap).second.at (i) << " RB " << i << " SINR " << sinr);
1892  // update correspondent timer
1893  std::map <uint16_t, uint32_t>::iterator itTimers;
1894  itTimers = m_ueCqiTimers.find ((*itMap).second.at (i));
1895  (*itTimers).second = m_cqiTimersThreshold;
1896 
1897  }
1898 
1899  }
1900  // remove obsolete info on allocation
1901  m_allocationMaps.erase (itMap);
1902  }
1903  break;
1904  case UlCqi_s::SRS:
1905  {
1906  // get the RNTI from vendor specific parameters
1907  uint16_t rnti = 0;
1908  NS_ASSERT (params.m_vendorSpecificList.size () > 0);
1909  for (uint16_t i = 0; i < params.m_vendorSpecificList.size (); i++)
1910  {
1911  if (params.m_vendorSpecificList.at (i).m_type == SRS_CQI_RNTI_VSP)
1912  {
1913  Ptr<SrsCqiRntiVsp> vsp = DynamicCast<SrsCqiRntiVsp> (params.m_vendorSpecificList.at (i).m_value);
1914  rnti = vsp->GetRnti ();
1915  }
1916  }
1917  std::map <uint16_t, std::vector <double> >::iterator itCqi;
1918  itCqi = m_ueCqi.find (rnti);
1919  if (itCqi == m_ueCqi.end ())
1920  {
1921  // create a new entry
1922  std::vector <double> newCqi;
1923  for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1924  {
1925  double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (j));
1926  newCqi.push_back (sinr);
1927  NS_LOG_INFO (this << " RNTI " << rnti << " new SRS-CQI for RB " << j << " value " << sinr);
1928 
1929  }
1930  m_ueCqi.insert (std::pair <uint16_t, std::vector <double> > (rnti, newCqi));
1931  // generate correspondent timer
1932  m_ueCqiTimers.insert (std::pair <uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
1933  }
1934  else
1935  {
1936  // update the values
1937  for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1938  {
1939  double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (j));
1940  (*itCqi).second.at (j) = sinr;
1941  NS_LOG_INFO (this << " RNTI " << rnti << " update SRS-CQI for RB " << j << " value " << sinr);
1942  }
1943  // update correspondent timer
1944  std::map <uint16_t, uint32_t>::iterator itTimers;
1945  itTimers = m_ueCqiTimers.find (rnti);
1946  (*itTimers).second = m_cqiTimersThreshold;
1947 
1948  }
1949 
1950 
1951  }
1952  break;
1953  case UlCqi_s::PUCCH_1:
1954  case UlCqi_s::PUCCH_2:
1955  case UlCqi_s::PRACH:
1956  {
1957  NS_FATAL_ERROR ("TdTbfqFfMacScheduler supports only PUSCH and SRS UL-CQIs");
1958  }
1959  break;
1960  default:
1961  NS_FATAL_ERROR ("Unknown type of UL-CQI");
1962  }
1963  return;
1964 }
1965 
1966 void
1968 {
1969  // refresh DL CQI P01 Map
1970  std::map <uint16_t,uint32_t>::iterator itP10 = m_p10CqiTimers.begin ();
1971  while (itP10 != m_p10CqiTimers.end ())
1972  {
1973  NS_LOG_INFO (this << " P10-CQI for user " << (*itP10).first << " is " << (uint32_t)(*itP10).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1974  if ((*itP10).second == 0)
1975  {
1976  // delete correspondent entries
1977  std::map <uint16_t,uint8_t>::iterator itMap = m_p10CqiRxed.find ((*itP10).first);
1978  NS_ASSERT_MSG (itMap != m_p10CqiRxed.end (), " Does not find CQI report for user " << (*itP10).first);
1979  NS_LOG_INFO (this << " P10-CQI expired for user " << (*itP10).first);
1980  m_p10CqiRxed.erase (itMap);
1981  std::map <uint16_t,uint32_t>::iterator temp = itP10;
1982  itP10++;
1983  m_p10CqiTimers.erase (temp);
1984  }
1985  else
1986  {
1987  (*itP10).second--;
1988  itP10++;
1989  }
1990  }
1991 
1992  // refresh DL CQI A30 Map
1993  std::map <uint16_t,uint32_t>::iterator itA30 = m_a30CqiTimers.begin ();
1994  while (itA30 != m_a30CqiTimers.end ())
1995  {
1996  NS_LOG_INFO (this << " A30-CQI for user " << (*itA30).first << " is " << (uint32_t)(*itA30).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1997  if ((*itA30).second == 0)
1998  {
1999  // delete correspondent entries
2000  std::map <uint16_t,SbMeasResult_s>::iterator itMap = m_a30CqiRxed.find ((*itA30).first);
2001  NS_ASSERT_MSG (itMap != m_a30CqiRxed.end (), " Does not find CQI report for user " << (*itA30).first);
2002  NS_LOG_INFO (this << " A30-CQI expired for user " << (*itA30).first);
2003  m_a30CqiRxed.erase (itMap);
2004  std::map <uint16_t,uint32_t>::iterator temp = itA30;
2005  itA30++;
2006  m_a30CqiTimers.erase (temp);
2007  }
2008  else
2009  {
2010  (*itA30).second--;
2011  itA30++;
2012  }
2013  }
2014 
2015  return;
2016 }
2017 
2018 
2019 void
2021 {
2022  // refresh UL CQI Map
2023  std::map <uint16_t,uint32_t>::iterator itUl = m_ueCqiTimers.begin ();
2024  while (itUl != m_ueCqiTimers.end ())
2025  {
2026  NS_LOG_INFO (this << " UL-CQI for user " << (*itUl).first << " is " << (uint32_t)(*itUl).second << " thr " << (uint32_t)m_cqiTimersThreshold);
2027  if ((*itUl).second == 0)
2028  {
2029  // delete correspondent entries
2030  std::map <uint16_t, std::vector <double> >::iterator itMap = m_ueCqi.find ((*itUl).first);
2031  NS_ASSERT_MSG (itMap != m_ueCqi.end (), " Does not find CQI report for user " << (*itUl).first);
2032  NS_LOG_INFO (this << " UL-CQI exired for user " << (*itUl).first);
2033  (*itMap).second.clear ();
2034  m_ueCqi.erase (itMap);
2035  std::map <uint16_t,uint32_t>::iterator temp = itUl;
2036  itUl++;
2037  m_ueCqiTimers.erase (temp);
2038  }
2039  else
2040  {
2041  (*itUl).second--;
2042  itUl++;
2043  }
2044  }
2045 
2046  return;
2047 }
2048 
2049 void
2050 TdTbfqFfMacScheduler::UpdateDlRlcBufferInfo (uint16_t rnti, uint8_t lcid, uint16_t size)
2051 {
2052  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
2053  LteFlowId_t flow (rnti, lcid);
2054  it = m_rlcBufferReq.find (flow);
2055  if (it != m_rlcBufferReq.end ())
2056  {
2057  NS_LOG_INFO (this << " UE " << rnti << " LC " << (uint16_t)lcid << " txqueue " << (*it).second.m_rlcTransmissionQueueSize << " retxqueue " << (*it).second.m_rlcRetransmissionQueueSize << " status " << (*it).second.m_rlcStatusPduSize << " decrease " << size);
2058  // Update queues: RLC tx order Status, ReTx, Tx
2059  // Update status queue
2060  if (((*it).second.m_rlcStatusPduSize > 0) && (size >= (*it).second.m_rlcStatusPduSize))
2061  {
2062  (*it).second.m_rlcStatusPduSize = 0;
2063  }
2064  else if (((*it).second.m_rlcRetransmissionQueueSize > 0) && (size >= (*it).second.m_rlcRetransmissionQueueSize))
2065  {
2066  (*it).second.m_rlcRetransmissionQueueSize = 0;
2067  }
2068  else if ((*it).second.m_rlcTransmissionQueueSize > 0)
2069  {
2070  uint32_t rlcOverhead;
2071  if (lcid == 1)
2072  {
2073  // for SRB1 (using RLC AM) it's better to
2074  // overestimate RLC overhead rather than
2075  // underestimate it and risk unneeded
2076  // segmentation which increases delay
2077  rlcOverhead = 4;
2078  }
2079  else
2080  {
2081  // minimum RLC overhead due to header
2082  rlcOverhead = 2;
2083  }
2084  // update transmission queue
2085  if ((*it).second.m_rlcTransmissionQueueSize <= size - rlcOverhead)
2086  {
2087  (*it).second.m_rlcTransmissionQueueSize = 0;
2088  }
2089  else
2090  {
2091  (*it).second.m_rlcTransmissionQueueSize -= size - rlcOverhead;
2092  }
2093  }
2094  }
2095  else
2096  {
2097  NS_LOG_ERROR (this << " Does not find DL RLC Buffer Report of UE " << rnti);
2098  }
2099 }
2100 
2101 void
2102 TdTbfqFfMacScheduler::UpdateUlRlcBufferInfo (uint16_t rnti, uint16_t size)
2103 {
2104 
2105  size = size - 2; // remove the minimum RLC overhead
2106  std::map <uint16_t,uint32_t>::iterator it = m_ceBsrRxed.find (rnti);
2107  if (it != m_ceBsrRxed.end ())
2108  {
2109  NS_LOG_INFO (this << " UE " << rnti << " size " << size << " BSR " << (*it).second);
2110  if ((*it).second >= size)
2111  {
2112  (*it).second -= size;
2113  }
2114  else
2115  {
2116  (*it).second = 0;
2117  }
2118  }
2119  else
2120  {
2121  NS_LOG_ERROR (this << " Does not find BSR report info of UE " << rnti);
2122  }
2123 
2124 }
2125 
2126 void
2128 {
2129  NS_LOG_FUNCTION (this << " RNTI " << rnti << " txMode " << (uint16_t)txMode);
2131  params.m_rnti = rnti;
2132  params.m_transmissionMode = txMode;
2134 }
2135 
2136 
2137 }
AttributeValue implementation for Boolean.
Definition: boolean.h:37
static uint32_t BsrId2BufferSize(uint8_t val)
Convert BSR ID to buffer size.
Definition: lte-common.cc:184
Provides the CSCHED SAP.
FfMacCschedSapUser class.
virtual void CschedUeConfigUpdateInd(const struct CschedUeConfigUpdateIndParameters &params)=0
CSCHED_UE_UPDATE_IND.
virtual void CschedUeConfigCnf(const struct CschedUeConfigCnfParameters &params)=0
CSCHED_UE_CONFIG_CNF.
Provides the SCHED SAP.
FfMacSchedSapUser class.
virtual void SchedUlConfigInd(const struct SchedUlConfigIndParameters &params)=0
SCHED_UL_CONFIG_IND.
virtual void SchedDlConfigInd(const struct SchedDlConfigIndParameters &params)=0
SCHED_DL_CONFIG_IND.
This abstract base class identifies the interface by means of which the helper object can plug on the...
UlCqiFilter_t m_ulCqiFilter
UL CQI filter.
Hold a signed integer type.
Definition: integer.h:44
static double fpS11dot3toDouble(uint16_t val)
Convert from fixed point S11.3 notation to double.
Definition: lte-common.cc:155
Service Access Point (SAP) offered by the Frequency Reuse algorithm instance to the MAC Scheduler ins...
Definition: lte-ffr-sap.h:40
virtual uint8_t GetTpc(uint16_t rnti)=0
GetTpc.
virtual void ReportUlCqiInfo(const struct FfMacSchedSapProvider::SchedUlCqiInfoReqParameters &params)=0
ReportUlCqiInfo.
virtual bool IsUlRbgAvailableForUe(int i, uint16_t rnti)=0
Check if UE can be served on i-th RB in UL.
virtual uint16_t GetMinContinuousUlBandwidth()=0
Get the minimum continuous Ul bandwidth.
virtual bool IsDlRbgAvailableForUe(int i, uint16_t rnti)=0
Check if UE can be served on i-th RB in DL.
virtual void ReportDlCqiInfo(const struct FfMacSchedSapProvider::SchedDlCqiInfoReqParameters &params)=0
ReportDlCqiInfo.
virtual std::vector< bool > GetAvailableUlRbg()=0
Get vector of available RB in UL for this Cell.
virtual std::vector< bool > GetAvailableDlRbg()=0
Get vector of available RBG in DL for this Cell.
Service Access Point (SAP) offered by the eNodeB RRC instance to the Frequency Reuse algorithm instan...
Definition: lte-ffr-sap.h:139
Template for the implementation of the LteFfrSapUser as a member of an owner class of type C to which...
Definition: lte-ffr-sap.h:256
Smart pointer class similar to boost::intrusive_ptr.
Definition: ptr.h:74
static Time Now(void)
Return the current simulation virtual time.
Definition: simulator.cc:195
Implements the SCHED SAP and CSCHED SAP for a Time Domain Token Bank Fair Queue scheduler.
uint16_t m_nextRntiUl
RNTI of the next user to be served next scheduling in UL.
void DoSchedDlRachInfoReq(const struct FfMacSchedSapProvider::SchedDlRachInfoReqParameters &params)
Sched DL RACH info request.
void DoSchedDlCqiInfoReq(const struct FfMacSchedSapProvider::SchedDlCqiInfoReqParameters &params)
Sched DL CQI info request.
void DoSchedUlNoiseInterferenceReq(const struct FfMacSchedSapProvider::SchedUlNoiseInterferenceReqParameters &params)
Sched UL noise interference request.
void DoSchedDlMacBufferReq(const struct FfMacSchedSapProvider::SchedDlMacBufferReqParameters &params)
Sched DL MAC buffer request.
std::map< uint16_t, DlHarqProcessesTimer_t > m_dlHarqProcessesTimer
DL HARQ process timer.
void UpdateDlRlcBufferInfo(uint16_t rnti, uint8_t lcid, uint16_t size)
Update DL RLC buffer info function.
virtual FfMacSchedSapProvider * GetFfMacSchedSapProvider()
void UpdateUlRlcBufferInfo(uint16_t rnti, uint16_t size)
Update UL RLC buffer info function.
virtual void DoDispose(void)
Destructor implementation.
FfMacSchedSapProvider * m_schedSapProvider
Sched SAP provider.
std::map< uint16_t, UlHarqProcessesDciBuffer_t > m_ulHarqProcessesDciBuffer
UL HARQ process DCI buffer.
FfMacCschedSapProvider::CschedCellConfigReqParameters m_cschedCellConfig
CSched cell config.
virtual void SetFfMacCschedSapUser(FfMacCschedSapUser *s)
set the user part of the FfMacCschedSap that this Scheduler will interact with.
FfMacSchedSapUser * m_schedSapUser
A=Sched SAP user.
void DoSchedDlPagingBufferReq(const struct FfMacSchedSapProvider::SchedDlPagingBufferReqParameters &params)
Sched DL paging buffer request.
unsigned int LcActivePerFlow(uint16_t rnti)
LC active flow size.
std::map< uint16_t, DlHarqProcessesDciBuffer_t > m_dlHarqProcessesDciBuffer
DL HARQ process DCI buffer.
virtual FfMacCschedSapProvider * GetFfMacCschedSapProvider()
std::map< uint16_t, DlHarqRlcPduListBuffer_t > m_dlHarqProcessesRlcPduListBuffer
DL HARQ process RLC PDU list buffer.
uint32_t m_creditLimit
flow credit limit (byte)
uint8_t UpdateHarqProcessId(uint16_t rnti)
Update and return a new process Id for the RNTI specified.
void DoCschedLcReleaseReq(const struct FfMacCschedSapProvider::CschedLcReleaseReqParameters &params)
CSched LC release request.
std::vector< uint16_t > m_rachAllocationMap
RACH allocation map.
LteFfrSapUser * m_ffrSapUser
FFR SAP user.
int GetRbgSize(int dlbandwidth)
Get RBG size.
std::map< uint16_t, uint8_t > m_ulHarqCurrentProcessId
UL HARQ current process ID.
void DoSchedDlRlcBufferReq(const struct FfMacSchedSapProvider::SchedDlRlcBufferReqParameters &params)
Sched DL RLC buffer request.
uint8_t HarqProcessAvailability(uint16_t rnti)
Return the availability of free process for the RNTI specified.
void DoSchedUlCqiInfoReq(const struct FfMacSchedSapProvider::SchedUlCqiInfoReqParameters &params)
Sched UL CQI info request.
uint8_t m_ulGrantMcs
MCS for UL grant (default 0)
uint32_t m_creditableThreshold
threshold of flow credit
static TypeId GetTypeId(void)
Get the type ID.
std::map< uint16_t, uint32_t > m_p10CqiTimers
Map of UE's timers on DL CQI P01 received.
std::map< uint16_t, tdtbfqsFlowPerf_t > m_flowStatsUl
Map of UE statistics (per RNTI basis)
std::map< uint16_t, uint8_t > m_p10CqiRxed
Map of UE's DL CQI P01 received.
void TransmissionModeConfigurationUpdate(uint16_t rnti, uint8_t txMode)
Transmission mde configuration update function.
friend class MemberCschedSapProvider< TdTbfqFfMacScheduler >
allow MemberCschedSapProvider<TdTbfqFfMacScheduler> class friend access
std::map< LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters > m_rlcBufferReq
Vectors of UE's LC info.
FfMacCschedSapProvider * m_cschedSapProvider
CSched SAP provider.
void DoSchedUlTriggerReq(const struct FfMacSchedSapProvider::SchedUlTriggerReqParameters &params)
Sched UL trigger request.
void RefreshUlCqiMaps(void)
Refresh UL CQI maps function.
int m_debtLimit
flow debt limit (byte)
std::map< uint16_t, uint8_t > m_uesTxMode
txMode of the UEs
std::map< uint16_t, uint32_t > m_a30CqiTimers
Map of UE's timers on DL CQI A30 received.
double EstimateUlSinr(uint16_t rnti, uint16_t rb)
Estimate UL SINR function.
void DoCschedUeReleaseReq(const struct FfMacCschedSapProvider::CschedUeReleaseReqParameters &params)
CSched UE release request.
void DoCschedLcConfigReq(const struct FfMacCschedSapProvider::CschedLcConfigReqParameters &params)
CSched LC config request.
void DoSchedUlSrInfoReq(const struct FfMacSchedSapProvider::SchedUlSrInfoReqParameters &params)
Sched UL SR info request.
LteFfrSapProvider * m_ffrSapProvider
FFR SAP provider.
virtual void SetFfMacSchedSapUser(FfMacSchedSapUser *s)
set the user part of the FfMacSchedSap that this Scheduler will interact with.
friend class MemberSchedSapProvider< TdTbfqFfMacScheduler >
allow MemberSchedSapProvider<TdTbfqFfMacScheduler> class friend access
void DoCschedCellConfigReq(const struct FfMacCschedSapProvider::CschedCellConfigReqParameters &params)
CSched cell config request.
uint32_t m_tokenPoolSize
maximum size of token pool (byte)
std::map< uint16_t, DlHarqProcessesStatus_t > m_dlHarqProcessesStatus
DL HARQ process status.
virtual LteFfrSapUser * GetLteFfrSapUser()
FfMacCschedSapUser * m_cschedSapUser
CSched SAP user.
std::map< uint16_t, std::vector< double > > m_ueCqi
Map of UEs' UL-CQI per RBG.
std::map< uint16_t, uint32_t > m_ueCqiTimers
Map of UEs' timers on UL-CQI per RBG.
virtual void SetLteFfrSapProvider(LteFfrSapProvider *s)
Set the Provider part of the LteFfrSap that this Scheduler will interact with.
std::map< uint16_t, SbMeasResult_s > m_a30CqiRxed
Map of UE's DL CQI A30 received.
virtual ~TdTbfqFfMacScheduler()
Destructor.
void DoSchedUlMacCtrlInfoReq(const struct FfMacSchedSapProvider::SchedUlMacCtrlInfoReqParameters &params)
Sched UL MAC control info request.
std::map< uint16_t, uint8_t > m_dlHarqCurrentProcessId
DL HARQ current process ID.
void DoSchedDlTriggerReq(const struct FfMacSchedSapProvider::SchedDlTriggerReqParameters &params)
Sched DL trigger request.
std::map< uint16_t, uint32_t > m_ceBsrRxed
Map of UE's buffer status reports received.
std::map< uint16_t, std::vector< uint16_t > > m_allocationMaps
Map of previous allocated UE per RBG (used to retrieve info from UL-CQI)
void RefreshHarqProcesses()
Refresh HARQ processes according to the timers.
void RefreshDlCqiMaps(void)
Refresh DL CQI maps function.
std::vector< struct RachListElement_s > m_rachList
RACH list.
std::vector< DlInfoListElement_s > m_dlInfoListBuffered
HARQ retx buffered.
std::map< uint16_t, UlHarqProcessesStatus_t > m_ulHarqProcessesStatus
UL HARQ process status.
void DoCschedUeConfigReq(const struct FfMacCschedSapProvider::CschedUeConfigReqParameters &params)
CSched UE config request.
std::map< uint16_t, tdtbfqsFlowPerf_t > m_flowStatsDl
Map of UE statistics (per RNTI basis) in downlink.
uint64_t bankSize
the number of bytes in token bank
bool m_harqOn
m_harqOn when false inhibit the HARQ mechanisms (by default active)
static uint8_t TxMode2LayerNum(uint8_t txMode)
Transmit mode 2 layer number.
Definition: lte-common.cc:212
a unique identifier for an interface.
Definition: type-id.h:59
TypeId SetParent(TypeId tid)
Set the parent TypeId.
Definition: type-id.cc:922
Hold an unsigned integer type.
Definition: uinteger.h:44
#define NO_SINR
#define HARQ_PROC_NUM
#define HARQ_DL_TIMEOUT
#define NS_ASSERT(condition)
At runtime, in debugging builds, if this condition is not true, the program prints the source file,...
Definition: assert.h:67
#define NS_ASSERT_MSG(condition, message)
At runtime, in debugging builds, if this condition is not true, the program prints the message to out...
Definition: assert.h:88
Ptr< const AttributeChecker > MakeBooleanChecker(void)
Definition: boolean.cc:121
Ptr< const AttributeAccessor > MakeBooleanAccessor(T1 a1)
Create an AttributeAccessor for a class data member, or a lone class get functor or set method.
Definition: boolean.h:85
Ptr< const AttributeAccessor > MakeIntegerAccessor(T1 a1)
Create an AttributeAccessor for a class data member, or a lone class get functor or set method.
Definition: integer.h:45
Ptr< const AttributeAccessor > MakeUintegerAccessor(T1 a1)
Create an AttributeAccessor for a class data member, or a lone class get functor or set method.
Definition: uinteger.h:45
#define NS_FATAL_ERROR(msg)
Report a fatal error with a message and terminate.
Definition: fatal-error.h:165
#define NS_ABORT_MSG_IF(cond, msg)
Abnormal program termination if a condition is true, with a message.
Definition: abort.h:108
#define NS_LOG_ERROR(msg)
Use NS_LOG to output a message of level LOG_ERROR.
Definition: log.h:257
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition: log.h:205
#define NS_LOG_DEBUG(msg)
Use NS_LOG to output a message of level LOG_DEBUG.
Definition: log.h:273
#define NS_LOG_LOGIC(msg)
Use NS_LOG to output a message of level LOG_LOGIC.
Definition: log.h:289
#define NS_LOG_FUNCTION(parameters)
If log level LOG_FUNCTION is enabled, this macro will output all input parameters separated by ",...
#define NS_LOG_INFO(msg)
Use NS_LOG to output a message of level LOG_INFO.
Definition: log.h:281
#define NS_OBJECT_ENSURE_REGISTERED(type)
Register an Object subclass with the TypeId system.
Definition: object-base.h:45
#define HARQ_PERIOD
Definition: lte-common.h:30
#define SRS_CQI_RNTI_VSP
Every class exported by the ns3 library is enclosed in the ns3 namespace.
std::vector< UlDciListElement_s > UlHarqProcessesDciBuffer_t
UL HARQ process DCI buffer vector.
static const int TdTbfqType0AllocationRbg[4]
TDTBFQ type 0 allocation RBG.
std::vector< uint8_t > DlHarqProcessesTimer_t
DL HARQ process timer vector typedef.
std::vector< uint8_t > DlHarqProcessesStatus_t
DL HARQ process status vector typedef.
std::vector< RlcPduList_t > DlHarqRlcPduListBuffer_t
vector of the 8 HARQ processes per UE
@ SUCCESS
Definition: ff-mac-common.h:62
std::vector< DlDciListElement_s > DlHarqProcessesDciBuffer_t
DL HARQ process DCI buffer vector typedef.
std::vector< uint8_t > UlHarqProcessesStatus_t
UL HARQ process status vector.
See section 4.3.8 builDataListElement.
struct DlDciListElement_s m_dci
DCI.
std::vector< std::vector< struct RlcPduListElement_s > > m_rlcPduList
RLC PDU list.
See section 4.3.10 buildRARListElement.
See section 4.3.1 dlDciListElement.
Definition: ff-mac-common.h:94
std::vector< uint8_t > m_ndi
New data indicator.
uint8_t m_harqProcess
HARQ process.
uint32_t m_rbBitmap
RB bitmap.
Definition: ff-mac-common.h:96
std::vector< uint8_t > m_mcs
MCS.
uint8_t m_resAlloc
The type of resource allocation.
Definition: ff-mac-common.h:98
std::vector< uint16_t > m_tbsSize
The TBs size.
Definition: ff-mac-common.h:99
std::vector< uint8_t > m_rv
Redundancy version.
uint8_t m_tpc
Tx power control command.
Parameters of the CSCHED_LC_CONFIG_REQ primitive.
std::vector< struct LogicalChannelConfigListElement_s > m_logicalChannelConfigList
logicalChannelConfigList
Parameters of the CSCHED_LC_RELEASE_REQ primitive.
std::vector< uint8_t > m_logicalChannelIdentity
logical channel identity
Parameters of the CSCHED_UE_CONFIG_REQ primitive.
Parameters of the CSCHED_UE_RELEASE_REQ primitive.
Parameters of the CSCHED_UE_CONFIG_CNF primitive.
Parameters of the CSCHED_UE_CONFIG_UPDATE_IND primitive.
Parameters of the SCHED_DL_CQI_INFO_REQ primitive.
std::vector< struct CqiListElement_s > m_cqiList
CQI list.
Parameters of the SCHED_DL_MAC_BUFFER_REQ primitive.
Parameters of the SCHED_DL_PAGING_BUFFER_REQ primitive.
Parameters of the SCHED_DL_RACH_INFO_REQ primitive.
std::vector< struct RachListElement_s > m_rachList
RACH list.
Parameters of the SCHED_DL_TRIGGER_REQ primitive.
std::vector< struct DlInfoListElement_s > m_dlInfoList
DL info list.
Parameters of the SCHED_UL_CQI_INFO_REQ primitive.
std::vector< struct VendorSpecificListElement_s > m_vendorSpecificList
vendor specific list
Parameters of the SCHED_UL_MAC_CTRL_INFO_REQ primitive.
std::vector< struct MacCeListElement_s > m_macCeList
MAC CE list.
Parameters of the SCHED_UL_NOISE_INTERFERENCE_REQ primitive.
Parameters of the SCHED_UL_SR_INFO_REQ primitive.
Parameters of the SCHED_UL_TRIGGER_REQ primitive.
std::vector< struct UlInfoListElement_s > m_ulInfoList
UL info list.
uint8_t m_nrOfPdcchOfdmSymbols
number of PDCCH OFDM symbols
std::vector< struct BuildDataListElement_s > m_buildDataList
build data list
std::vector< struct BuildRarListElement_s > m_buildRarList
build rar list
Parameters of the SCHED_UL_CONFIG_IND primitive.
std::vector< struct UlDciListElement_s > m_dciList
DCI list.
LteFlowId structure.
Definition: lte-common.h:37
See section 4.3.9 rlcPDU_ListElement.
uint8_t m_logicalChannelIdentity
logical channel identity
std::vector< uint16_t > m_sinr
SINR.
See section 4.3.2 ulDciListElement.
int8_t m_pdcchPowerOffset
CCH power offset.
int8_t m_tpc
Tx power control command.
uint8_t m_dai
DL assignment index.
uint8_t m_cceIndex
Control Channel Element index.
uint8_t m_ulIndex
UL index.
uint8_t m_ueTxAntennaSelection
UE antenna selection.
bool m_cqiRequest
CQI request.
uint8_t m_n2Dmrs
n2 DMRS
uint8_t m_freqHopping
freq hopping
uint8_t m_aggrLevel
The aggregation level.
bool m_ulDelay
UL delay?
int8_t m_tpc
Tx power control command.
bool m_cqiRequest
CQI request?
bool m_hopping
hopping?
uint16_t m_tbSize
size
uint8_t m_rbLen
length
uint8_t m_mcs
MCS.
uint8_t m_rbStart
start
uint16_t m_rnti
RNTI.
uint32_t tokenPoolSize
current size of token pool (byte)
int debtLimit
counter threshold that the flow cannot further borrow tokens from bank
uint32_t maxTokenPoolSize
maximum size of token pool (byte)
int counter
the number of token borrow or given to token bank
uint32_t creditableThreshold
the flow cannot borrow token from bank until the number of token it has deposited to bank reaches thi...
uint64_t packetArrivalRate
packet arrival rate( byte/s)
uint64_t tokenGenerationRate
token generation rate ( byte/s )
Time flowStart
flow start time
uint32_t burstCredit
the maximum number of tokens connection i can borrow from the bank each time