A Discrete-Event Network Simulator
API
wifi-eht-network.cc
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2022
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation;
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
16  *
17  * Author: Sebastien Deronne <sebastien.deronne@gmail.com>
18  */
19 
20 #include "ns3/boolean.h"
21 #include "ns3/command-line.h"
22 #include "ns3/config.h"
23 #include "ns3/double.h"
24 #include "ns3/eht-phy.h"
25 #include "ns3/enum.h"
26 #include "ns3/internet-stack-helper.h"
27 #include "ns3/ipv4-address-helper.h"
28 #include "ns3/log.h"
29 #include "ns3/mobility-helper.h"
30 #include "ns3/multi-model-spectrum-channel.h"
31 #include "ns3/on-off-helper.h"
32 #include "ns3/packet-sink-helper.h"
33 #include "ns3/packet-sink.h"
34 #include "ns3/rng-seed-manager.h"
35 #include "ns3/spectrum-wifi-helper.h"
36 #include "ns3/ssid.h"
37 #include "ns3/string.h"
38 #include "ns3/udp-client-server-helper.h"
39 #include "ns3/udp-server.h"
40 #include "ns3/uinteger.h"
41 #include "ns3/wifi-acknowledgment.h"
42 #include "ns3/yans-wifi-channel.h"
43 #include "ns3/yans-wifi-helper.h"
44 
45 #include <array>
46 #include <functional>
47 #include <numeric>
48 
49 // This is a simple example in order to show how to configure an IEEE 802.11be Wi-Fi network.
50 //
51 // It outputs the UDP or TCP goodput for every EHT MCS value, which depends on the MCS value (0 to
52 // 13), the channel width (20, 40, 80 or 160 MHz) and the guard interval (800ns, 1600ns or 3200ns).
53 // The PHY bitrate is constant over all the simulation run. The user can also specify the distance
54 // between the access point and the station: the larger the distance the smaller the goodput.
55 //
56 // The simulation assumes a configurable number of stations in an infrastructure network:
57 //
58 // STA AP
59 // * *
60 // | |
61 // n1 n2
62 //
63 // Packets in this simulation belong to BestEffort Access Class (AC_BE).
64 // By selecting an acknowledgment sequence for DL MU PPDUs, it is possible to aggregate a
65 // Round Robin scheduler to the AP, so that DL MU PPDUs are sent by the AP via DL OFDMA.
66 
67 using namespace ns3;
68 
69 NS_LOG_COMPONENT_DEFINE("eht-wifi-network");
70 
77 std::vector<uint64_t>
78 GetRxBytes(bool udp, const ApplicationContainer& serverApp, uint32_t payloadSize)
79 {
80  std::vector<uint64_t> rxBytes(serverApp.GetN(), 0);
81  if (udp)
82  {
83  for (uint32_t i = 0; i < serverApp.GetN(); i++)
84  {
85  rxBytes[i] = payloadSize * DynamicCast<UdpServer>(serverApp.Get(i))->GetReceived();
86  }
87  }
88  else
89  {
90  for (uint32_t i = 0; i < serverApp.GetN(); i++)
91  {
92  rxBytes[i] = DynamicCast<PacketSink>(serverApp.Get(i))->GetTotalRx();
93  }
94  }
95  return rxBytes;
96 }
97 
107 void
108 PrintIntermediateTput(std::vector<uint64_t>& rxBytes,
109  bool udp,
110  const ApplicationContainer& serverApp,
111  uint32_t payloadSize,
112  Time tputInterval,
113  double simulationTime)
114 {
115  auto newRxBytes = GetRxBytes(udp, serverApp, payloadSize);
116  Time now = Simulator::Now();
117 
118  std::cout << "[" << (now - tputInterval).As(Time::S) << " - " << now.As(Time::S)
119  << "] Per-STA Throughput (Mbit/s):";
120 
121  for (std::size_t i = 0; i < newRxBytes.size(); i++)
122  {
123  std::cout << "\t\t(" << i << ") "
124  << (newRxBytes[i] - rxBytes[i]) * 8. / tputInterval.GetMicroSeconds(); // Mbit/s
125  }
126  std::cout << std::endl;
127 
128  rxBytes.swap(newRxBytes);
129 
130  if (now < Seconds(simulationTime) - NanoSeconds(1))
131  {
132  Simulator::Schedule(Min(tputInterval, Seconds(simulationTime) - now - NanoSeconds(1)),
134  rxBytes,
135  udp,
136  serverApp,
137  payloadSize,
138  tputInterval,
139  simulationTime);
140  }
141 }
142 
143 int
144 main(int argc, char* argv[])
145 {
146  bool udp{true};
147  bool downlink{true};
148  bool useRts{false};
149  uint16_t mpduBufferSize{512};
150  std::string emlsrLinks;
151  uint16_t paddingDelayUsec{32};
152  uint16_t transitionDelayUsec{128};
153  uint16_t channelSwitchDelayUsec{100};
154  bool switchAuxPhy{true};
155  double simulationTime{10}; // seconds
156  double distance{1.0}; // meters
157  double frequency{5}; // whether the first link operates in the 2.4, 5 or 6 GHz
158  double frequency2{0}; // whether the second link operates in the 2.4, 5 or 6 GHz (0 means no
159  // second link exists)
160  double frequency3{
161  0}; // whether the third link operates in the 2.4, 5 or 6 GHz (0 means no third link exists)
162  std::size_t nStations{1};
163  std::string dlAckSeqType{"NO-OFDMA"};
164  bool enableUlOfdma{false};
165  bool enableBsrp{false};
166  int mcs{-1}; // -1 indicates an unset value
167  uint32_t payloadSize =
168  700; // must fit in the max TX duration when transmitting at MCS 0 over an RU of 26 tones
169  Time tputInterval{0}; // interval for detailed throughput measurement
170  double minExpectedThroughput{0};
171  double maxExpectedThroughput{0};
172  Time accessReqInterval{0};
173 
174  CommandLine cmd(__FILE__);
175  cmd.AddValue(
176  "frequency",
177  "Whether the first link operates in the 2.4, 5 or 6 GHz band (other values gets rejected)",
178  frequency);
179  cmd.AddValue(
180  "frequency2",
181  "Whether the second link operates in the 2.4, 5 or 6 GHz band (0 means the device has one "
182  "link, otherwise the band must be different than first link and third link)",
183  frequency2);
184  cmd.AddValue(
185  "frequency3",
186  "Whether the third link operates in the 2.4, 5 or 6 GHz band (0 means the device has up to "
187  "two links, otherwise the band must be different than first link and second link)",
188  frequency3);
189  cmd.AddValue("emlsrLinks",
190  "The comma separated list of IDs of EMLSR links (for MLDs only)",
191  emlsrLinks);
192  cmd.AddValue("emlsrPaddingDelay",
193  "The EMLSR padding delay in microseconds (0, 32, 64, 128 or 256)",
194  paddingDelayUsec);
195  cmd.AddValue("emlsrTransitionDelay",
196  "The EMLSR transition delay in microseconds (0, 16, 32, 64, 128 or 256)",
197  transitionDelayUsec);
198  cmd.AddValue("emlsrAuxSwitch",
199  "Whether Aux PHY should switch channel to operate on the link on which "
200  "the Main PHY was operating before moving to the link of the Aux PHY. ",
201  switchAuxPhy);
202  cmd.AddValue("channelSwitchDelay",
203  "The PHY channel switch delay in microseconds",
204  channelSwitchDelayUsec);
205  cmd.AddValue("distance",
206  "Distance in meters between the station and the access point",
207  distance);
208  cmd.AddValue("simulationTime", "Simulation time in seconds", simulationTime);
209  cmd.AddValue("udp", "UDP if set to 1, TCP otherwise", udp);
210  cmd.AddValue("downlink",
211  "Generate downlink flows if set to 1, uplink flows otherwise",
212  downlink);
213  cmd.AddValue("useRts", "Enable/disable RTS/CTS", useRts);
214  cmd.AddValue("mpduBufferSize",
215  "Size (in number of MPDUs) of the BlockAck buffer",
216  mpduBufferSize);
217  cmd.AddValue("nStations", "Number of non-AP HE stations", nStations);
218  cmd.AddValue("dlAckType",
219  "Ack sequence type for DL OFDMA (NO-OFDMA, ACK-SU-FORMAT, MU-BAR, AGGR-MU-BAR)",
220  dlAckSeqType);
221  cmd.AddValue("enableUlOfdma",
222  "Enable UL OFDMA (useful if DL OFDMA is enabled and TCP is used)",
223  enableUlOfdma);
224  cmd.AddValue("enableBsrp",
225  "Enable BSRP (useful if DL and UL OFDMA are enabled and TCP is used)",
226  enableBsrp);
227  cmd.AddValue(
228  "muSchedAccessReqInterval",
229  "Duration of the interval between two requests for channel access made by the MU scheduler",
230  accessReqInterval);
231  cmd.AddValue("mcs", "if set, limit testing to a specific MCS (0-11)", mcs);
232  cmd.AddValue("payloadSize", "The application payload size in bytes", payloadSize);
233  cmd.AddValue("tputInterval", "duration of intervals for throughput measurement", tputInterval);
234  cmd.AddValue("minExpectedThroughput",
235  "if set, simulation fails if the lowest throughput is below this value",
236  minExpectedThroughput);
237  cmd.AddValue("maxExpectedThroughput",
238  "if set, simulation fails if the highest throughput is above this value",
239  maxExpectedThroughput);
240  cmd.Parse(argc, argv);
241 
242  if (useRts)
243  {
244  Config::SetDefault("ns3::WifiRemoteStationManager::RtsCtsThreshold", StringValue("0"));
245  Config::SetDefault("ns3::WifiDefaultProtectionManager::EnableMuRts", BooleanValue(true));
246  }
247 
248  if (dlAckSeqType == "ACK-SU-FORMAT")
249  {
250  Config::SetDefault("ns3::WifiDefaultAckManager::DlMuAckSequenceType",
252  }
253  else if (dlAckSeqType == "MU-BAR")
254  {
255  Config::SetDefault("ns3::WifiDefaultAckManager::DlMuAckSequenceType",
257  }
258  else if (dlAckSeqType == "AGGR-MU-BAR")
259  {
260  Config::SetDefault("ns3::WifiDefaultAckManager::DlMuAckSequenceType",
262  }
263  else if (dlAckSeqType != "NO-OFDMA")
264  {
265  NS_ABORT_MSG("Invalid DL ack sequence type (must be NO-OFDMA, ACK-SU-FORMAT, MU-BAR or "
266  "AGGR-MU-BAR)");
267  }
268 
269  double prevThroughput[12] = {0};
270 
271  std::cout << "MCS value"
272  << "\t\t"
273  << "Channel width"
274  << "\t\t"
275  << "GI"
276  << "\t\t\t"
277  << "Throughput" << '\n';
278  int minMcs = 0;
279  int maxMcs = 13;
280  if (mcs >= 0 && mcs <= 13)
281  {
282  minMcs = mcs;
283  maxMcs = mcs;
284  }
285  for (int mcs = minMcs; mcs <= maxMcs; mcs++)
286  {
287  uint8_t index = 0;
288  double previous = 0;
289  uint16_t maxChannelWidth =
290  (frequency != 2.4 && frequency2 != 2.4 && frequency3 != 2.4) ? 160 : 40;
291  for (int channelWidth = 20; channelWidth <= maxChannelWidth;) // MHz
292  {
293  for (int gi = 3200; gi >= 800;) // Nanoseconds
294  {
295  if (!udp)
296  {
297  Config::SetDefault("ns3::TcpSocket::SegmentSize", UintegerValue(payloadSize));
298  }
299 
301  wifiStaNodes.Create(nStations);
303  wifiApNode.Create(1);
304 
305  NetDeviceContainer apDevice;
309 
310  wifi.SetStandard(WIFI_STANDARD_80211be);
311  std::array<std::string, 3> channelStr;
312  std::array<FrequencyRange, 3> freqRanges;
313  uint8_t nLinks = 0;
314  std::string dataModeStr = "EhtMcs" + std::to_string(mcs);
315  std::string ctrlRateStr;
316  uint64_t nonHtRefRateMbps = EhtPhy::GetNonHtReferenceRate(mcs) / 1e6;
317 
318  if (frequency2 == frequency || frequency3 == frequency ||
319  (frequency3 != 0 && frequency3 == frequency2))
320  {
321  std::cout << "Frequency values must be unique!" << std::endl;
322  return 0;
323  }
324 
325  for (auto freq : {frequency, frequency2, frequency3})
326  {
327  if (nLinks > 0 && freq == 0)
328  {
329  break;
330  }
331  channelStr[nLinks] = "{0, " + std::to_string(channelWidth) + ", ";
332  if (freq == 6)
333  {
334  channelStr[nLinks] += "BAND_6GHZ, 0}";
335  freqRanges[nLinks] = WIFI_SPECTRUM_6_GHZ;
336  Config::SetDefault("ns3::LogDistancePropagationLossModel::ReferenceLoss",
337  DoubleValue(48));
338  wifi.SetRemoteStationManager(nLinks,
339  "ns3::ConstantRateWifiManager",
340  "DataMode",
341  StringValue(dataModeStr),
342  "ControlMode",
343  StringValue(dataModeStr));
344  }
345  else if (freq == 5)
346  {
347  channelStr[nLinks] += "BAND_5GHZ, 0}";
348  freqRanges[nLinks] = WIFI_SPECTRUM_5_GHZ;
349  ctrlRateStr = "OfdmRate" + std::to_string(nonHtRefRateMbps) + "Mbps";
350  wifi.SetRemoteStationManager(nLinks,
351  "ns3::ConstantRateWifiManager",
352  "DataMode",
353  StringValue(dataModeStr),
354  "ControlMode",
355  StringValue(ctrlRateStr));
356  }
357  else if (freq == 2.4)
358  {
359  channelStr[nLinks] += "BAND_2_4GHZ, 0}";
360  freqRanges[nLinks] = WIFI_SPECTRUM_2_4_GHZ;
361  Config::SetDefault("ns3::LogDistancePropagationLossModel::ReferenceLoss",
362  DoubleValue(40));
363  ctrlRateStr = "ErpOfdmRate" + std::to_string(nonHtRefRateMbps) + "Mbps";
364  wifi.SetRemoteStationManager(nLinks,
365  "ns3::ConstantRateWifiManager",
366  "DataMode",
367  StringValue(dataModeStr),
368  "ControlMode",
369  StringValue(ctrlRateStr));
370  }
371  else
372  {
373  std::cout << "Wrong frequency value!" << std::endl;
374  return 0;
375  }
376  nLinks++;
377  }
378 
379  if (nLinks > 1 && !emlsrLinks.empty())
380  {
381  wifi.ConfigEhtOptions("EmlsrActivated", BooleanValue(true));
382  }
383 
384  Ssid ssid = Ssid("ns3-80211be");
385 
386  /*
387  * SingleModelSpectrumChannel cannot be used with 802.11be because two
388  * spectrum models are required: one with 78.125 kHz bands for HE PPDUs
389  * and one with 312.5 kHz bands for, e.g., non-HT PPDUs (for more details,
390  * see issue #408 (CLOSED))
391  */
392  SpectrumWifiPhyHelper phy(nLinks);
393  phy.SetPcapDataLinkType(WifiPhyHelper::DLT_IEEE802_11_RADIO);
394  phy.Set("ChannelSwitchDelay", TimeValue(MicroSeconds(channelSwitchDelayUsec)));
395 
396  mac.SetType("ns3::StaWifiMac", "Ssid", SsidValue(ssid));
397  mac.SetEmlsrManager("ns3::DefaultEmlsrManager",
398  "EmlsrLinkSet",
399  StringValue(emlsrLinks),
400  "EmlsrPaddingDelay",
401  TimeValue(MicroSeconds(paddingDelayUsec)),
402  "EmlsrTransitionDelay",
403  TimeValue(MicroSeconds(transitionDelayUsec)),
404  "SwitchAuxPhy",
405  BooleanValue(switchAuxPhy));
406  for (uint8_t linkId = 0; linkId < nLinks; linkId++)
407  {
408  phy.Set(linkId, "ChannelSettings", StringValue(channelStr[linkId]));
409 
410  auto spectrumChannel = CreateObject<MultiModelSpectrumChannel>();
411  auto lossModel = CreateObject<LogDistancePropagationLossModel>();
412  spectrumChannel->AddPropagationLossModel(lossModel);
413  phy.AddChannel(spectrumChannel, freqRanges[linkId]);
414  }
415  staDevices = wifi.Install(phy, mac, wifiStaNodes);
416 
417  if (dlAckSeqType != "NO-OFDMA")
418  {
419  mac.SetMultiUserScheduler("ns3::RrMultiUserScheduler",
420  "EnableUlOfdma",
421  BooleanValue(enableUlOfdma),
422  "EnableBsrp",
423  BooleanValue(enableBsrp),
424  "AccessReqInterval",
425  TimeValue(accessReqInterval));
426  }
427  mac.SetType("ns3::ApWifiMac",
428  "EnableBeaconJitter",
429  BooleanValue(false),
430  "Ssid",
431  SsidValue(ssid));
432  apDevice = wifi.Install(phy, mac, wifiApNode);
433 
436  int64_t streamNumber = 100;
437  streamNumber += wifi.AssignStreams(apDevice, streamNumber);
438  streamNumber += wifi.AssignStreams(staDevices, streamNumber);
439 
440  // Set guard interval and MPDU buffer size
441  Config::Set(
442  "/NodeList/*/DeviceList/*/$ns3::WifiNetDevice/HeConfiguration/GuardInterval",
443  TimeValue(NanoSeconds(gi)));
444  Config::Set("/NodeList/*/DeviceList/*/$ns3::WifiNetDevice/Mac/MpduBufferSize",
445  UintegerValue(mpduBufferSize));
446 
447  // mobility.
449  Ptr<ListPositionAllocator> positionAlloc = CreateObject<ListPositionAllocator>();
450 
451  positionAlloc->Add(Vector(0.0, 0.0, 0.0));
452  positionAlloc->Add(Vector(distance, 0.0, 0.0));
453  mobility.SetPositionAllocator(positionAlloc);
454 
455  mobility.SetMobilityModel("ns3::ConstantPositionMobilityModel");
456 
457  mobility.Install(wifiApNode);
458  mobility.Install(wifiStaNodes);
459 
460  /* Internet stack*/
462  stack.Install(wifiApNode);
463  stack.Install(wifiStaNodes);
464 
466  address.SetBase("192.168.1.0", "255.255.255.0");
467  Ipv4InterfaceContainer staNodeInterfaces;
468  Ipv4InterfaceContainer apNodeInterface;
469 
470  staNodeInterfaces = address.Assign(staDevices);
471  apNodeInterface = address.Assign(apDevice);
472 
473  /* Setting applications */
474  ApplicationContainer serverApp;
475  auto serverNodes = downlink ? std::ref(wifiStaNodes) : std::ref(wifiApNode);
477  NodeContainer clientNodes;
478  for (std::size_t i = 0; i < nStations; i++)
479  {
480  serverInterfaces.Add(downlink ? staNodeInterfaces.Get(i)
481  : apNodeInterface.Get(0));
482  clientNodes.Add(downlink ? wifiApNode.Get(0) : wifiStaNodes.Get(i));
483  }
484 
485  if (udp)
486  {
487  // UDP flow
488  uint16_t port = 9;
490  serverApp = server.Install(serverNodes.get());
491  serverApp.Start(Seconds(0.0));
492  serverApp.Stop(Seconds(simulationTime + 1));
493 
494  for (std::size_t i = 0; i < nStations; i++)
495  {
497  client.SetAttribute("MaxPackets", UintegerValue(4294967295U));
498  client.SetAttribute("Interval", TimeValue(Time("0.00001"))); // packets/s
499  client.SetAttribute("PacketSize", UintegerValue(payloadSize));
500  ApplicationContainer clientApp = client.Install(clientNodes.Get(i));
501  clientApp.Start(Seconds(1.0));
502  clientApp.Stop(Seconds(simulationTime + 1));
503  }
504  }
505  else
506  {
507  // TCP flow
508  uint16_t port = 50000;
510  PacketSinkHelper packetSinkHelper("ns3::TcpSocketFactory", localAddress);
511  serverApp = packetSinkHelper.Install(serverNodes.get());
512  serverApp.Start(Seconds(0.0));
513  serverApp.Stop(Seconds(simulationTime + 1));
514 
515  for (std::size_t i = 0; i < nStations; i++)
516  {
517  OnOffHelper onoff("ns3::TcpSocketFactory", Ipv4Address::GetAny());
518  onoff.SetAttribute("OnTime",
519  StringValue("ns3::ConstantRandomVariable[Constant=1]"));
520  onoff.SetAttribute("OffTime",
521  StringValue("ns3::ConstantRandomVariable[Constant=0]"));
522  onoff.SetAttribute("PacketSize", UintegerValue(payloadSize));
523  onoff.SetAttribute("DataRate", DataRateValue(1000000000)); // bit/s
524  AddressValue remoteAddress(
525  InetSocketAddress(serverInterfaces.GetAddress(i), port));
526  onoff.SetAttribute("Remote", remoteAddress);
527  ApplicationContainer clientApp = onoff.Install(clientNodes.Get(i));
528  clientApp.Start(Seconds(1.0));
529  clientApp.Stop(Seconds(simulationTime + 1));
530  }
531  }
532 
533  // cumulative number of bytes received by each server application
534  std::vector<uint64_t> cumulRxBytes(nStations, 0);
535 
536  if (tputInterval.IsStrictlyPositive())
537  {
538  Simulator::Schedule(Seconds(1) + tputInterval,
540  cumulRxBytes,
541  udp,
542  serverApp,
543  payloadSize,
544  tputInterval,
545  simulationTime + 1);
546  }
547 
548  Simulator::Stop(Seconds(simulationTime + 1));
549  Simulator::Run();
550 
551  // When multiple stations are used, there are chances that association requests
552  // collide and hence the throughput may be lower than expected. Therefore, we relax
553  // the check that the throughput cannot decrease by introducing a scaling factor (or
554  // tolerance)
555  double tolerance = 0.10;
556  cumulRxBytes = GetRxBytes(udp, serverApp, payloadSize);
557  uint64_t rxBytes = std::accumulate(cumulRxBytes.cbegin(), cumulRxBytes.cend(), 0);
558  double throughput = (rxBytes * 8) / (simulationTime * 1000000.0); // Mbit/s
559 
561 
562  std::cout << mcs << "\t\t\t" << channelWidth << " MHz\t\t\t" << gi << " ns\t\t\t"
563  << throughput << " Mbit/s" << std::endl;
564 
565  // test first element
566  if (mcs == 0 && channelWidth == 20 && gi == 3200)
567  {
568  if (throughput * (1 + tolerance) < minExpectedThroughput)
569  {
570  NS_LOG_ERROR("Obtained throughput " << throughput << " is not expected!");
571  exit(1);
572  }
573  }
574  // test last element
575  if (mcs == 11 && channelWidth == 160 && gi == 800)
576  {
577  if (maxExpectedThroughput > 0 &&
578  throughput > maxExpectedThroughput * (1 + tolerance))
579  {
580  NS_LOG_ERROR("Obtained throughput " << throughput << " is not expected!");
581  exit(1);
582  }
583  }
584  // test previous throughput is smaller (for the same mcs)
585  if (throughput * (1 + tolerance) > previous)
586  {
587  previous = throughput;
588  }
589  else if (throughput > 0)
590  {
591  NS_LOG_ERROR("Obtained throughput " << throughput << " is not expected!");
592  exit(1);
593  }
594  // test previous throughput is smaller (for the same channel width and GI)
595  if (throughput * (1 + tolerance) > prevThroughput[index])
596  {
597  prevThroughput[index] = throughput;
598  }
599  else if (throughput > 0)
600  {
601  NS_LOG_ERROR("Obtained throughput " << throughput << " is not expected!");
602  exit(1);
603  }
604  index++;
605  gi /= 2;
606  }
607  channelWidth *= 2;
608  }
609  }
610  return 0;
611 }
a polymophic address class
Definition: address.h:101
holds a vector of ns3::Application pointers.
void Start(Time start) const
Start all of the Applications in this container at the start time given as a parameter.
Ptr< Application > Get(uint32_t i) const
Get the Ptr<Application> stored in this container at a given index.
void Stop(Time stop) const
Arrange for all of the Applications in this container to Stop() at the Time given as a parameter.
uint32_t GetN() const
Get the number of Ptr<Application> stored in this container.
Parse command-line arguments.
Definition: command-line.h:232
This class can be used to hold variables of floating point type such as 'double' or 'float'.
Definition: double.h:42
static uint64_t GetNonHtReferenceRate(uint8_t mcsValue)
Calculate the rate in bps of the non-HT Reference Rate corresponding to the supplied HE MCS index.
Definition: eht-phy.cc:385
Hold variables of type enum.
Definition: enum.h:62
an Inet address class
aggregate IP/TCP/UDP functionality to existing Nodes.
A helper class to make life easier while doing simple IPv4 address assignment in scripts.
static Ipv4Address GetAny()
holds a vector of std::pair of Ptr<Ipv4> and interface index.
std::pair< Ptr< Ipv4 >, uint32_t > Get(uint32_t i) const
Get the std::pair of an Ptr<Ipv4> and interface stored at the location specified by the index.
Helper class used to assign positions and mobility models to nodes.
holds a vector of ns3::NetDevice pointers
keep track of a set of node pointers.
void Add(const NodeContainer &nc)
Append the contents of another NodeContainer to the end of this container.
Ptr< Node > Get(uint32_t i) const
Get the Ptr<Node> stored in this container at a given index.
A helper to make it easier to instantiate an ns3::OnOffApplication on a set of nodes.
Definition: on-off-helper.h:44
A helper to make it easier to instantiate an ns3::PacketSinkApplication on a set of nodes.
Smart pointer class similar to boost::intrusive_ptr.
Definition: ptr.h:77
static void SetRun(uint64_t run)
Set the run number of simulation.
static void SetSeed(uint32_t seed)
Set the seed.
static EventId Schedule(const Time &delay, FUNC f, Ts &&... args)
Schedule an event to expire after delay.
Definition: simulator.h:571
static void Destroy()
Execute the events scheduled with ScheduleDestroy().
Definition: simulator.cc:142
static Time Now()
Return the current simulation virtual time.
Definition: simulator.cc:208
static void Run()
Run the simulation.
Definition: simulator.cc:178
static void Stop()
Tell the Simulator the calling event should be the last one executed.
Definition: simulator.cc:186
Make it easy to create and manage PHY objects for the spectrum model.
The IEEE 802.11 SSID Information Element.
Definition: ssid.h:36
Hold variables of type string.
Definition: string.h:56
Simulation virtual time values and global simulation resolution.
Definition: nstime.h:105
TimeWithUnit As(const Unit unit=Time::AUTO) const
Attach a unit to a Time, to facilitate output in a specific unit.
Definition: time.cc:415
@ S
second
Definition: nstime.h:116
int64_t GetMicroSeconds() const
Get an approximation of the time stored in this instance in the indicated unit.
Definition: nstime.h:413
Create a client application which sends UDP packets carrying a 32bit sequence number and a 64 bit tim...
Create a server application which waits for input UDP packets and uses the information carried into t...
Hold an unsigned integer type.
Definition: uinteger.h:45
helps to create WifiNetDevice objects
Definition: wifi-helper.h:324
create MAC layers for a ns3::WifiNetDevice.
@ DLT_IEEE802_11_RADIO
Include Radiotap link layer information.
Definition: wifi-helper.h:178
uint16_t port
Definition: dsdv-manet.cc:44
void SetDefault(std::string name, const AttributeValue &value)
Definition: config.cc:890
void Set(std::string path, const AttributeValue &value)
Definition: config.cc:876
#define NS_ABORT_MSG(msg)
Unconditional abnormal program termination with a message.
Definition: abort.h:49
int64x64_t Min(const int64x64_t &a, const int64x64_t &b)
Minimum.
Definition: int64x64.h:229
#define NS_LOG_ERROR(msg)
Use NS_LOG to output a message of level LOG_ERROR.
Definition: log.h:254
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition: log.h:202
Time MicroSeconds(uint64_t value)
Construct a Time in the indicated unit.
Definition: nstime.h:1350
Time NanoSeconds(uint64_t value)
Construct a Time in the indicated unit.
Definition: nstime.h:1362
Time Seconds(double value)
Construct a Time in the indicated unit.
Definition: nstime.h:1326
@ WIFI_STANDARD_80211be
address
Definition: first.py:47
stack
Definition: first.py:44
NLOHMANN_BASIC_JSON_TPL_DECLARATION std::string to_string(const NLOHMANN_BASIC_JSON_TPL &j)
user-defined to_string function for JSON values
Definition: json.h:25255
void(* Time)(Time oldValue, Time newValue)
TracedValue callback signature for Time.
Definition: nstime.h:839
Every class exported by the ns3 library is enclosed in the ns3 namespace.
constexpr FrequencyRange WIFI_SPECTRUM_6_GHZ
Identifier for the frequency range covering the wifi spectrum in the 6 GHz band.
constexpr FrequencyRange WIFI_SPECTRUM_5_GHZ
Identifier for the frequency range covering the wifi spectrum in the 5 GHz band.
constexpr FrequencyRange WIFI_SPECTRUM_2_4_GHZ
Identifier for the frequency range covering the wifi spectrum in the 2.4 GHz band.
cmd
Definition: second.py:40
staDevices
Definition: third.py:100
ssid
Definition: third.py:93
mac
Definition: third.py:92
wifi
Definition: third.py:95
wifiApNode
Definition: third.py:86
mobility
Definition: third.py:105
wifiStaNodes
Definition: third.py:84
phy
Definition: third.py:89
std::ofstream throughput
std::vector< uint64_t > GetRxBytes(bool udp, const ApplicationContainer &serverApp, uint32_t payloadSize)
void PrintIntermediateTput(std::vector< uint64_t > &rxBytes, bool udp, const ApplicationContainer &serverApp, uint32_t payloadSize, Time tputInterval, double simulationTime)
Print average throughput over an intermediate time interval.